TOC 
Network Working GroupJ. Wu
Internet-DraftY. Cui
Intended status: ExperimentalX. Li
Expires: June 11, 2010M. Xu
 Tsinghua University
 C. Metz
 Cisco Systems, Inc.
 December 08, 2009


4over6 Transit Solution using IP Encapsulation and MP-BGP Extensions
draft-wu-softwire-4over6-04

Abstract

The emerging and growing deployment of IPv6 networks will introduce cases where connectivity with IPv4 networks crossing IPv6 transit backbones is desired. This document describes a mechanism for automatic discovery and creation of IPv4 over IPv6 tunnels via extensions to multi- protocol BGP. It is targeted at connecting islands of IPv4 networks across an IPv6-only backbone without the need for a manually configured overlay of tunnels. The mechanisms described in this document have been implemented, tested and deployed on the large research IPv6 network in China.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on June 11, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the BSD License.



Table of Contents

1.  Introduction

2.  4over6 Framework Overview

3.  Prototype Implementation
    3.1.  4over6 Packet Forwarding
    3.2.  Encapsulation table
    3.3.  MP-BGP 4over6 Protocol Extensions
        3.3.1.  Receiving Routing Information from Local CE
        3.3.2.  Receiving 4over6 Routing Information from a remote 4over6 PE

4.  4over6 Deployment Experience
    4.1.  CNGI-CERNET2
    4.2.  4over6 Testbed on the CNGI-CERNET2 IPv6 Network
    4.3.  Deployment Experiences

5.  On-going Experiment

6.  Relationship to Softwires Mesh Effort

7.  IANA Considerations

8.  Security Considerations

9.  Conclusion

10.  Acknowledgements

11.  Normative References

§  Authors' Addresses




 TOC 

1.  Introduction

Due to the lack of IPv4 address space, more and more IPv6 networks have been deployed not only on edge networks, but also on backbone networks. However, there are still a large number of legacy IPv4 hosts and applications. As a result, IPv6 networks and IPv4 applications/hosts will have to coexist for a long period of time.

The emerging and growing deployment of IPv6 networks will introduce cases where connectivity with IPv4 networks is desired. Some IPv6 backbones will need to offer transit services to attached IPv4 access networks. The method to achieve this would be to encapsulate and then transport the IPv4 payloads inside IPv6 tunnels spanning the backbone. There are some IPv6/IPv4-related tunneling protocols and mechanisms defined in the literature. But at the time that the mechanism described in this document was introduced, most of these existing techniques focus on the problem of IPv6 over IPv4, rather than the case of IPv4 over IPv6. Encapsulation methods alone, such as that defined in [RFC2473] (Conta, A. and S. Deering, “Generic Packet Tunneling in IPv6 Specification,” December 1998.), require manual configuration in order to operate. When a large number of tunnels are necessary, manual configuration can become burdensome. To the above problem, this document describes an approach, referred to as "4over6".

The 4over6 mechanism concerns two aspects: the control plane and the data plane. The control plane needs to address the problem of how to setup an IPv4 over IPv6 tunnel in an automatic and scalable fashion between a large number of edge routers. This document describes experimental extensions to MP-BGP [RFC4271] (Rekhter, Y., Li, T., and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” January 2006.) [RFC4760] (Bates, T., Chandra, R., Katz, D., and Y. Rekhter, “Multiprotocol Extensions for BGP-4,” January 2007.) employed to communicate tunnel end-point information and establish 4over6 tunnels between dual-stack Provider Edge (PE) routers positioned at the edge of the IPv6 backbone network. Once the 4over6 tunnel is in place, the data plane focuses on the packet forwarding processes of encapsulation and decapsulation.



 TOC 

2.  4over6 Framework Overview

In the topology shown in figure 1, a number of IPv6-only P routers compose a native IPv6 backbone. The PE routers are dual-stack and referred to as 4over6 PE routers. The IPv6 backbone acts as a transit core to transport IPv4 packets across the IPv6 backbone. This enables each of IPv4 access islands to communicate with each other via 4over6 tunnels spanning the IPv6 transit core.

                   _._._._._            _._._._._
                  |  IPv4   |          |  IPv4   |
                  | access  |          | access  |
                  | island  |          | island  |
                   _._._._._            _._._._._
                       |                    |
                   Dual-Stack           Dual-Stack
                   "4over6 PE"          "4over6 PE"
                       |                    |
                       |                    |
                     __+____________________+__
        4over6      /   :   :           :   :  \    IPv6 only
        Tunnels    |    :      :      :     :   |  transit core
        between    |    :        [P]        :   |  with multiple
          PEs      |    :     :       :     :   |   [P routers]
                   |    :   :            :  :   |
                    \_._._._._._._._._._._._._./
                       | /                \ |
                       |                    |
                    Dual-Stack          Dual-Stack
                    "4over6 PE"         "4over6 PE"
                      |  |                  |
                   _._._._._            _._._._._
                  |  IPv4   |          |  IPv4   |
                  | access  |          | access  |
                  | island  |          | island  |
                   _._._._._            _._._._._

Figure 1: IPv4 over IPv6 network topology

As shown in figure 1, there are multiple dual-stack PE routers connected to the IPv6 transit core. In order for the ingress 4over6 PE router to forward an IPv4 packet across the IPv6 backbone to the correct egress 4over6 PE router, the ingress 4over6 PE router must learn which IPv4 destination prefixes are reachable through each egress 4over6 PE router. MP-BGP will be extended to distribute the destination IPv4 prefix information between peering dual-stack PE routers. Section 4 of this document presents the definition of the 4over6 protocol field in MP-BGP and section 5 describes MP-BGP's extended behavior in support of this capability.

After the ingress 4over6 PE router learns the correct egress 4over6 PE router via MP-BGP, it will forward the packet across the IPv6 backbone using IP encapsulation. The egress 4over6 PE router will receive the encapsulated packet, remove the IPv6 header and then forward the original IPv4 packet to its final IPv4 destination. Section 6 describes the procedure of packet forwarding.



 TOC 

3.  Prototype Implementation

An implementatoin of the 4over6 mechanisms described in this document was developed, tested and deployed on Linux with kernel version 2.4. The prototype system is composed of three components: packet forwarding, the encapsulation table and MP-BGP extensions. The packet forwarding and encapsulation table are Linux kernel modules and the MP-BGP extension was developed by extending Zebra routing software.

The following sections will discuss these parts in detail.



 TOC 

3.1.  4over6 Packet Forwarding

Forwarding an IPv4 packet through the IPv6 transit core includes 3 parts: encapsulation of the incoming IPv4 packet with the IPv6 tunnel header; transmission of the encapsulated packet over the IPv6 transit backbone; and decapsulation of the IPv6 header and forwarding of the original IPv4 packet. Native IPv6 routing and forwarding are employed in the backbone network since the P routers take the 4over6 tunneled packets as just native IPv6 packets. Therefore, 4over6 packet forwarding involves only the encapsulation process and the decapsulation process, both of which are peformed on the 4over6 PE routers.

             Tunnel from Ingress PE to Egress PE
                ---------------------------->
              Tunnel                      Tunnel
              Entry-Point                 Exit-Point
              Node                        Node
+-+    IPv4    +--+   IPv6 Transit Core    +--+    IPv4    +-+
|S|-->--//-->--|PE|=====>=====//=====>=====|PE|-->--//-->--|D|
+-+            +--+                        +--+            +-+
Original    Ingress PE                   Egress PE        Original
Packet    (Encapsulation)              (Decapsulation)    Packet
Source                                                    Destination
Node                                                      Node

Figure 2: Packet forwarding along 4over6 Tunnel

As shown in Figure 2, packet encapsulation and decapsulaion are both on the dual-stack 4over6 PE routers. Figure 3 shows the format of packet encapsulation and decapsulation.

                        +----------------------------------//-----+
                        | IPv4 Header |   Packet Payload          |
                        +----------------------------------//-----+
                         <         Original IPv4 Packet           >
                                      |
                                      |(Encapsulation on ingress PE)
                                      |
                                      v
 < Tunnel IPv6 Headers > <         Original IPv4 Packet           >
+-----------+ - - - - - +-------------+-----------//--------------+
|   IPv6    | IPv6      |   IPv4      |                           |
|           | Extension |             |      Packet Payload       |
|   Header  | Headers   |  Header     |                           |
+-----------+ - - - - - +-------------+-----------//--------------+
 <                      Tunnel IPv6 Packet                       >
                                      |
                                      |(Decapsulation on egress PE)
                                      |
                                      v
                        +----------------------------------//-----+
                        | IPv4 Header |   Packet Payload          |
                        +----------------------------------//-----+
                         <         Original IPv4 Packet           >

Figure 3: Packet encapsulation and decapsulation on dual-stack 4over6 PE router

The encapsulation format to apply is IPv4 encapsulated in IPv6 as outlined in [RFC2473] (Conta, A. and S. Deering, “Generic Packet Tunneling in IPv6 Specification,” December 1998.).



 TOC 

3.2.  Encapsulation table

Each 4over6 PE router maintains an encapsulation table as depicted in Figure 4. Each entry in the encapsulation table consists of an IPv4 prefix and its corresponding IPv6 address. The IPv4 prefix is a particular network located in an IPv4 access island network. The IPv6 address is the 4over6 virtual interface (VIF) address of the 4over6 PE router that the IPv4 prefix is reachable through. The encapsulation table is built and maintained using local configuration information and MP-BGP advertisements received from remote 4over6 PE routers.

The 4over6 VIF is an IPv6 /128 address that is locally configured on each 4over6 router. This address, as an ordinary global IPv6 address, must also be injected into the IPv6 IGP so that it is reachable across the IPv6 backbone.

      +-------------+------------------------+
      | IPv4 Prefix | IPv6 Advertising AFBR  |
      +-------------+------------------------+

Figure 4: Encapsulation Table

When an IPv4 packet arrives at the ingress 4over6 PE router, a lookup in the local IPv4 routing table will result in a pointer to the local encapsulation table entry with the matching destination IPv4 prefix. There is a corresponding IPv6 address in the encapsulation table. The IPv4 packet is encapsulated in an IPv6 header. The source address in the IPv6 header is the IPv6 VIF address of the local 4over6 PE router and the destination address is the IPv6 VIF address of the remote 4over6 PE router contained in the local encapsulation table. The packet is then subjected to normal IPv6 forwarding for transport across the IPv6 backbone.

When the encapsulated packet arrives at the egress 4over6 PE router, the IPv6 header is removed and the original IPv4 packet is forwarded to the destination IPv4 network based on the outcome of the lookup in the IPv4 routing table contained in the egress 4over6 PE router.



 TOC 

3.3.  MP-BGP 4over6 Protocol Extensions

Each 4over6 PE router possesses an IPv4 interface connected to an IPv4 access network(s). It can peer with other IPv4 routers using IGP or BGP routing protocols to exchange local IPv4 routing information. Routing information can also be installed on the 4over6 PE router using static configuration methods.

Each 4over6 PE also possesses at least one IPv6 interface to connect it into the IPv6 transit backbone. The 4over6 PE typically uses IGP routing protocols to exchange IPv6 backbone routing information with other IPv6 P routers. The 4over6 PE router will also form an MP-iBGP peering relationship with other 4over6 PE routers connected to the IPv6 backbone network.

The use of MP-iBGP suggests that the participating 4over6 PE routers that share a route reflector or form a full mesh of TCP connections are contained in the same autonomous system (AS). This implementation is in fact only deployed over a single AS. This was not an intentional design constraint but rather reflected the single AS topology of the CNGI-CERNET2 national IPv6 backbone used in the testing and deployment of this solution.



 TOC 

3.3.1.  Receiving Routing Information from Local CE

When a 4over6 PE router learns routing information from the locally attached IPv4 access networks, the 4over6 MP-iBGP entity should process the information as follows:

  1. Install and maintain local IPv4 routing information in the IPv4 routing database.
  2. Install and maintain new entries in encapsulation table. Each entry should consist of the IPv4 prefix and the local IPv6 VIF address.
  3. Advertise the new contents of the local encapsulation table in the form of MP_REACH_NLRI update information to remote 4over6 PE routers. The format of these updates is as follows:
  4. A new SAFI for this solution was obtained as SAFI_4OVER6 (67) from IANA. We call BGP update with SAFI being 67 as 4over6 routing information.


 TOC 

3.3.2.  Receiving 4over6 Routing Information from a remote 4over6 PE

A local 4over6 PE router will receive MP_REACH_NLRI updates from remote 4over6 routers and use that information to populate the local encapsulation table and the BGP routing database. After validating correctness of the received attribute, the following procedures are used to update the local encapsulation table and redistribute to local IPv4 routing table:

  1. Validate the received BGP update packet as 4over6 routing information by AFI = 1 (IPv4) and SAFI = 67 (4OVER6)
  2. Extract the IPv4 network address from the NLRI field and install as the IPv4 network prefix
  3. Extract the IPv6 address from the Network Address of the Next Hop field and place that as an associated entry next to the IPv4 network index. (Note this describes the update of local encap table.)
  4. Install and maintain a new entry in encapsulation table with the extracted IPv4 prefix and its corresponding IPv6 address.
  5. Redistribute the new 4over6 routing information to local IPv4 routing table. Set the destination network prefix as the extracted IPv4 prefix, set the Next Hop as Null, and Set the OUTPUT Interface as the 4over6 VIF on the local 4over6 PE router.

Therefore, when an ingress 4over6 PE router receives an IPv4 packet, the lookup in its IPv4 routing table will have a result of the output interface as the local 4over6 VIF, where the incoming IPv4 packet will be encapsulated with a new IPv6 header as indicated in the encapsulation table.



 TOC 

4.  4over6 Deployment Experience



 TOC 

4.1.  CNGI-CERNET2

A prototype of the 4over6 solution is implemented and deployed on CNGI-CERNET2. CNGI-CERNET2 is one of the China Next Generation Internet (CNGI) backbones, operated by the China Education and Research Network (CERNET). CNGI-CERNET2 connects approximately 25 core nodes distributed in 20 cities in China at speeds of 2.5-10 Gb/s. The CNGI-CERNET2 backbone is IPv6-only with some attached customer premise networks (CPN) being dual-stack. The CNGI-CERNET2 backbone, attached CNGI-CERNET2 CPNs, and CNGI-6IX Exchange all have globally unique AS numbers. This IPv6 backbone is used to provide transit IPv4 services for customer IPv4 networks connected via 4over6 PE routers to the backbone.



 TOC 

4.2.  4over6 Testbed on the CNGI-CERNET2 IPv6 Network

Figure 5 shows 4over6 deployment network topology.


          +-----------------------------------------------------+
          |                    IPv6 (CERNET2)                   |
          |                                                     |
          +-----------------------------------------------------+
          |                  |                   |              |
  Tsinghua|Univ.       Peking|Univ.          SJTU|     Southeast|Univ.
       +------+           +------+           +------+        +------+
       |4over6|    ...    |4over6|           |4over6|   ...  |4over6|
       |router|           |router|           |router|        |router|
       +------+           +------+           +------+        +------+
          |                  |                  |                |
          |                  |                  |                |
          |                  |                  |                |
    +-----------+      +-----------+      +-----------+     +-----------+
    |IPv4 access| ...  |IPv4 access|      |IPv4 access| ... |IPv4 access|
    |  network  |      |  network  |      |  network  |     |  network  |
    +-----------+      +-----------+      +-----------+     +-----------+
          |
    +----------------------+
    |    IPv4 (Internet)   |
    |                      |
    +----------------------+

Figure 5: 4over6 deployment network topology

The IPv4-only access networks are equipped with servers and clients running different applications. The 4over6 PE routers are deployed at 8 x IPv6 nodes of CNGI-CERNET2, located in 7 universities and 5 cities across China. As suggested in figure 5 some of the IPv4 access networks are connected to both IPv6 and IPv4 networks and others are only connected to the IPv6 backbone. In the deployment, users in different IPv4 networks can communicate with each other through 4over6 tunnels.



 TOC 

4.3.  Deployment Experiences

A number of 4over6 PE routers were deployed and configured to support the 4over6 transit solution. MP-BGP peerings were established, and successful distribution of 4over6 SAFI information occured. Inspection of the BGP routing and encapsulation tables confirmed that the correct entries were sent and received. ICMP ping traffic indicated that IPv4 packets were successfully transiting the IPv6 backbone.

In addition other application protocols were successfully tested per the following:

Other protocols, including FTP, SSH, IM(MSN, GTalk) and Multimedia Streaming, all functioned correctly.



 TOC 

5.  On-going Experiment

Based on the above successful experiment, we are going to have further experiments in the following two aspects.

1. Inter-AS 4over6

The above experiment is only deployed over a single AS. With the growth of the network, there could be multiple ASes between the edge networks. Specifically, the next-hop field in MP-BGP indicates the tunnel end point in the current 4over6 techonology. However, in the inter-AS scenario, the tunnel end point needs to be seperated from the field of next hop. Moreover, since the technology of 4over6 is deployed on the router running MP-BGP, the supportability of 4over6 on each ASBR will be a main concern in the Inter-AS experiment. We may consider different situations: (1) Some of ASBRs do not support 4over6; (2) ASBRs only support 4over6 control plane (i.e. MP-BGP extension of 4over6) rather than 4over6 data plane; (3) ASBRs support both the control plane and the data plane for 4over6.

2. Multicast 4over6

The current 4over6 technology only supports unicast routing and data forwarding. With the deployment of network-layer multicast in multiple IPv4 edge networks, we need to extend the 4over6 technology to support multicast including both multicast tree manipulation on the control plane and multicast traffic forwarding on the data plane. Based on the current unicast 4over6 technology providing the unicast connectivity of edge networks over the backbone in another address family, the multicast 4over6 will focus on the mapping technologies between the multicast groups in the different address families.



 TOC 

6.  Relationship to Softwires Mesh Effort

The 4over6 solution was presented at the IETF Softwires Working Group Interim meeting in Hong Kong in January 2006. The existence of this large- scale implementation and deployment clearly showed that MP-BGP could be employed to support tunnel setup in a scalable fashion across an IPv6 backbone. Perhaps most important was the use-case presented, that being an IPv6 backbone offering transit to attached client IPv4 networks.

The 4over6 solution can be viewed as a precursor to softwires mesh framework proposed to the softwire problem statement [RFC4925] (Li, X., Dawkins, S., Ward, D., and A. Durand, “Softwire Problem Statement,” July 2007.). However there are several differences with this solution and the effort that emerged from the softwires working group called softwires mesh framework [RFC5565] (Wu, J., Cui, Y., Metz, C., and E. Rosen, “Softwire Mesh Framework,” June 2009.) and the related solutions [RFC5512] (Mohapatra, P. and E. Rosen, “The BGP Encapsulation Subsequent Address Family Identifier (SAFI) and the BGP Tunnel Encapsulation Attribute,” April 2009.) [RFC5549] (Le Faucheur, F. and E. Rosen, “Advertising IPv4 Network Layer Reachability Information with an IPv6 Next Hop,” May 2009.).



 TOC 

7.  IANA Considerations

A new SAFI value (67) was assigned by IANA for 4over6 BGP extension: SAFI_4OVER6.



 TOC 

8.  Security Considerations

Tunneling mechanisms, especially automatic ones, often have potential problems of DDoS attacks on the tunnel-entry point or tunnel-end point. As the advantage, 4over6 BGP extension don't allocate resources to a single flow or maintain the state for a flow. However, since the IPv6 tunnel endpoints are globally reachable IPv6 addresses, it would be trivial to spoof IPv4 packets by encapsulating and sending them over IPv6 to the tunnel interface. This could bypass IPv4 RPF or other antispoofing techniques. Also, any IPv4 filters may be bypassed.

I-BGP peering relationship may be maintained over IPSec or other secure communications.



 TOC 

9.  Conclusion

The emerging and growing deployment of IPv6 networks, in particular IPv6 backbone networks, will introduce cases where connectivity with IPv4 networks is desired. Some IPv6 backbones will need to offer transit services to attached IPv4 access networks. The 4over6 solution outlined in this document supports such a capability through an extension to MP-BGP to convey IPv4 routing information along with an associated IPv6 address. Basic IP encapsulation is used in the dataplane as IPv4 packets are tunneled through the IPv6 backbone.

An actual implemention has been developed and deployed on the CNGI-CERNET2 IPv6 backbone.



 TOC 

10.  Acknowledgements

During the design procedure of the 4over6 framework and definition of BGP-MP 4over6 extension, Professor Ke Xu gave the authors many valuable comments. The support of IETF softwire WG is also gratefully acknowledged with special thanks to David Ward, Alain Durand and Mark Townsley for their rich experience and knowledge in this field. Yakov Rekhter provided helpful comments and advice. Mark Townsley reviewed this document carefully and gave the authors a lot of valuable comments, which are very important for improving this document.

The deployment and test for the prototype system was conducted among 7 universities -- namely, Tsinghua University, Peking University, Beijing University of Post and Telecommunications, Shanghai Jiaotong University, Huazhong University of Science and Technology, Southeast University, South China University of Technology. The authors would like to thank everyone involved in this effort in these universities.



 TOC 

11. Normative References

[RFC2473] Conta, A. and S. Deering, “Generic Packet Tunneling in IPv6 Specification,” RFC 2473, December 1998 (TXT, HTML, XML).
[RFC4271] Rekhter, Y., Li, T., and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” RFC 4271, January 2006 (TXT).
[RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter, “Multiprotocol Extensions for BGP-4,” RFC 4760, January 2007 (TXT).
[RFC4925] Li, X., Dawkins, S., Ward, D., and A. Durand, “Softwire Problem Statement,” RFC 4925, July 2007 (TXT).
[RFC5512] Mohapatra, P. and E. Rosen, “The BGP Encapsulation Subsequent Address Family Identifier (SAFI) and the BGP Tunnel Encapsulation Attribute,” RFC 5512, April 2009 (TXT).
[RFC5549] Le Faucheur, F. and E. Rosen, “Advertising IPv4 Network Layer Reachability Information with an IPv6 Next Hop,” RFC 5549, May 2009 (TXT).
[RFC5565] Wu, J., Cui, Y., Metz, C., and E. Rosen, “Softwire Mesh Framework,” RFC 5565, June 2009 (TXT).


 TOC 

Authors' Addresses

  Jianping Wu
  Tsinghua University
  Department of Computer Science, Tsinghua University
  Beijing 100084
  P.R.China
Phone:  +86-10-6278-5983
Email:  jianping@cernet.edu.cn
  
  Yong Cui
  Tsinghua University
  Department of Computer Science, Tsinghua University
  Beijing 100084
  P.R.China
Phone:  +86-10-6278-5822
Email:  cy@csnet1.cs.tsinghua.edu.cn
  
  Xing Li
  Tsinghua University
  Department of Electronic Engineering, Tsinghua University
  Beijing 100084
  P.R.China
Phone:  +86-10-6278-5983
Email:  xing@cernet.edu.cn
  
  Mingwei Xu
  Tsinghua University
  Department of Computer Science, Tsinghua University
  Beijing 100084
  P.R.China
Phone:  +86-10-6278-5822
Email:  xmw@csnet1.cs.tsinghua.edu.cn
  
  Chris Metz
  Cisco Systems, Inc.
  3700 Cisco Way
  San Jose, Ca. 95134
  USA
Email:  chmetz@cisco.com