Internet-Draft | Green Challenges in Cats | April 2023 |
Wang & Fu | Expires 8 October 2023 | [Page] |
As mobile edge computing networks sink computing tasks from cloud data centers to the edge of the network, tasks need to be processed by computing resources close to the user side. Therefore, CATS was raised. Reducing carbon footprint is a major challenge of our time. Networks are the main enablers of carbon reductions. The introduction of computing dimension in CATS makes it insufficient to consider the energy saving of network dimension in the past, so the green for CATS based on network and computing combination is worth exploring. This document outlines a series of challenges and associated research to explore ways to reduce carbon footprint and reduce network energy based on CATS.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 8 October 2023.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
With the continuous development and progress of the Internet, a large amount of computing resources is required to complete data processing. In order to disperse the pressure of cloud data centers, computing power gradually moves from the center to the edge, forming scattered computing resources in mobile networks. In order to make full use of scattered computing resources and provide better services, Computing-Aware Traffic Steering (CATS) is proposed to support steering the traffic among different edge sites according to both the real-time network and computing resource status as mentioned in [I-D.yao-cats-ps-usecases] and [I-D.yao-cats-gap-reqs]. It requires the network to be aware of computing resource information and select a service instance based on the joint metric of computing and networking.¶
Green has become a global topic. The United Nations and the vast majority of governments agree that climate change and the need to curb greenhouse gas emissions are the major challenges of our time. Therefore, improving energy efficiency and reducing electricity consumption are becoming increasingly important for society and many industries. The networking industry is no exception. The IETF conducted a study on the energy costs of the IETF meeting three times a year. The results showed that it was found that 99% of energy consumption came from air travel.¶
In addition, there are several papers that discuss green networks, and some literature [I-D.cx-green-ps] summarizes the energy-saving possibilities that exist in the network. However, there is no discussion of joint optimization of green and energy savings with computing and networking. Therefore, this document outlines a series of challenges and related research to explore ways to reduce carbon emissions and reduce network energy based on CATS.¶
Considering energy savings in CATS creates challenges in the following aspects¶
Because Cats considers computing resources, modeling of computing resource energy consumption is necessary in order to save energy. Some documents introduce three levels of metric modeling considerations. The energy consumption of the equipment is different when the load is different. For example, the energy efficiency of equipment is different when it is not loaded or at full load. Therefore, it is also a challenge to consider which factors to consider when modeling the energy consumption of computing resources.¶
On the one hand, the magnitude of computing energy consumption may be different from the magnitude of network energy consumption, and how to weigh the ratio of the two becomes a challenge when performing joint optimization.¶
On the other hand, the introduction of energy consumption may be accompanied by a compromise between user service experience, and how to save energy while ensuring user service experience is also a challenge when carrying out joint optimization.¶
How to make networks "greener" (or reduce carbon footprint) is an important challenge for the networking industry today. This document highlights the technical challenges, such as how to model the energy consumption of computing resources and the problems caused by the joint optimization of computing and networking.¶
TBD.¶