TOC 
Network Working GroupY. Sheffer
Internet-DraftCheck Point
Intended status: Standards TrackH. Tschofenig
Expires: April 4, 2009Nokia Siemens Networks
 L. Dondeti
 V. Narayanan
 QUALCOMM, Inc.
 October 01, 2008


IKEv2 Session Resumption
draft-tschofenig-ipsecme-ikev2-resumption-00.txt

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 4, 2009.

Abstract

The Internet Key Exchange version 2 (IKEv2) protocol has a certain computational and communication overhead with respect to the number of round-trips required and the cryptographic operations involved. In remote access situations, the Extensible Authentication Protocol (EAP) is used for authentication, which adds several more round trips and consequently latency.

To re-establish security associations (SA) upon a failure recovery condition is time consuming, especially when an IPsec peer, such as a VPN gateway, needs to re-establish a large number of SAs with various end points. A high number of concurrent sessions might cause additional problems for an IPsec peer during SA re-establishment.

In order to avoid the need to re-run the key exchange protocol from scratch it would be useful to provide an efficient way to resume an IKE/IPsec session. This document proposes an extension to IKEv2 that allows a client to re-establish an IKE SA with a gateway in a highly efficient manner, utilizing a previously established IKE SA.

A client can reconnect to a gateway from which it was disconnected. The proposed approach uses a ticket to store state information that is later made available to the IKEv2 responder for re-authentication. Restoring state information by utilizing a ticket, although the format is not specified in this document, is one possible way.



Table of Contents

1.  Introduction
2.  Terminology
3.  Usage Scenario
4.  Protocol Details
    4.1.  Requesting a Ticket
    4.2.  Presenting a Ticket
        4.2.1.  Protection of the IKE_SESSION_RESUME Exchange
        4.2.2.  Presenting a Ticket: The DoS Case
        4.2.3.  Requesting a ticket during resumption
    4.3.  IKE Notifications
    4.4.  TICKET_OPAQUE Notify Payload
    4.5.  Processing Guidelines for IKE SA Establishment
5.  Ticket Recommendations
    5.1.  Ticket Content
    5.2.  Ticket Identity and Lifecycle
6.  IANA Considerations
7.  Security Considerations
    7.1.  Stolen Tickets
    7.2.  Forged Tickets
    7.3.  Denial of Service Attacks
    7.4.  Ticket Protection Key Management
    7.5.  Ticket Lifetime
    7.6.  Ticket Format
    7.7.  Identity Privacy, Anonymity, and Unlinkability
    7.8.  Replay Protection in the IKE_SESSION_RESUME Exchange
8.  Acknowledgements
9.  References
    9.1.  Normative References
    9.2.  Informative References
Appendix A.  Change Log
    A.1.  -00
    A.2.  -04
    A.3.  -03
    A.4.  -02
    A.5.  -01
    A.6.  -00
§  Authors' Addresses
§  Intellectual Property and Copyright Statements




 TOC 

1.  Introduction

The Internet Key Exchange version 2 (IKEv2) protocol has a certain computational and communication overhead with respect to the number of round-trips required and the cryptographic operations involved. In particular the Extensible Authentication Protocol (EAP) is used for authentication in remote access cases, which increases latency.

To re-establish security associations (SA) upon a failure recovery condition is time-consuming, especially when an IPsec peer, such as a VPN gateway, needs to re-establish a large number of SAs with various end points. A high number of concurrent sessions might cause additional problems for an IPsec responder.

In many failure cases it would be useful to provide an efficient way to resume an interrupted IKE/IPsec session. This document proposes an extension to IKEv2 that allows a client to re-establish an IKE SA with a gateway in a highly efficient manner, utilizing a previously established IKE SA.

A client can reconnect to a gateway from which it was disconnected. One way to ensure that the IKEv2 responder is able to recreate the state information is by maintaining IKEv2 state in a "ticket", an opaque data structure. This ticket is created by the server and forwarded to the client by value or by reference. The IKEv2 protocol is extended to allow a client to request and present a ticket (by value or by reference).

This approach is similar to the one taken by TLS session resumption [RFC4507] (Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, “Transport Layer Security (TLS) Session Resumption without Server-Side State,” May 2006.) with the required adaptations for IKEv2, e.g., to accommodate the two-phase protocol structure. We have borrowed heavily from that specification.

The proposed solution should additionally meet the following goals:

The following are non-goals of this solution:



 TOC 

2.  Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.).

This document uses terminology defined in [RFC4301] (Kent, S. and K. Seo, “Security Architecture for the Internet Protocol,” December 2005.), [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” December 2005.), and [RFC4555] (Eronen, P., “IKEv2 Mobility and Multihoming Protocol (MOBIKE),” June 2006.). In addition, this document uses the following terms:

IKEv2 ticket:
An IKEv2 ticket is a data structure that contains all the necessary information that allows any gateway within the same secure domain as the gateway that created the ticket to verify the validity of the ticket and extract IKEv2 policy and session keys to re-establish an IKEv2 session.
Ticket reference:
A pointer to a ticket. When resolving the reference an IKEv2 responder obtains the ticket.

In subsequent sections we use the term ticket and thereby refer to both the ticket by value and by reference, unless indicated otherwise.



 TOC 

3.  Usage Scenario

This specification envisions two usage scenarios for efficient IKEv2 and IPsec SA session re-establishment.

The first is similar to the use case specified in Section 1.1.3 of the IKEv2 specification [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” December 2005.), where the IPsec tunnel mode is used to establish a secure channel between a remote access client and a gateway; the traffic flow may be between the client and entities beyond the gateway.

The second use case focuses on the usage of transport (or tunnel) mode to secure the communicate between two end points (e.g., two servers). The two endpoints have a client-server relationship with respect to a protocol that runs using the protections afforded by the IPsec SA.



 (a)

 +-+-+-+-+-+                          +-+-+-+-+-+
 !         !      IKEv2/IKEv2-EAP     !         !     Protected
 ! Remote  !<------------------------>!         !     Subnet
 ! Access  !                          ! Access  !<--- and/or
 ! Client  !<------------------------>! Gateway !     Internet
 !         !      IPsec tunnel        !         !
 +-+-+-+-+-+                          +-+-+-+-+-+


 (b)

 +-+-+-+-+-+                          +-+-+-+-+-+
 !         !    IKE_SESSION_RESUME    !         !
 ! Remote  !<------------------------>!         !
 ! Access  !                          ! Access  !
 ! Client  !<------------------------>! Gateway !
 !         !      IPsec tunnel        !         !
 +-+-+-+-+-+                          +-+-+-+-+-+


 Figure 1: Resuming a Session with a Remote Access Gateway 

In this scenario, an end-host (an entity with a host implementation of IPsec [RFC4301] (Kent, S. and K. Seo, “Security Architecture for the Internet Protocol,” December 2005.) ) establishes a tunnel mode IPsec SA with a gateway in a remote network using IKEv2. The end-host in this scenario is sometimes referred to as a remote access client. At a later stage when a client needs to re-establish the IKEv2 session it may choose to establish IPsec SAs using a full IKEv2 exchange or the IKE_SESSION_RESUME exchange (shown in Figure 1 (Resuming a Session with a Remote Access Gateway)).

In this scenario, the client needs to get an IP address from the remote network so that traffic can be encapsulated by the remote access gateway before reaching the client. In the initial exchange, the gateway may acquire IP addresses from the address pool of a local DHCP server. The session resumption exchange may need to support the assignment of a new IP address.

The protocol defined in this document supports the re-allocation of an IP address to the client, if this capability is provided by the network. This capability is implicit in the use of the IKE configuration mechanism, which allows the client to present its existing IP address and receive the same address back, if allowed by the gateway.



 TOC 

4.  Protocol Details

This section provides protocol details and contains the normative parts. This document defines two protocol exchanges, namely requesting a ticket, see Section 4.1 (Requesting a Ticket), and presenting a ticket, see Section 4.2 (Presenting a Ticket).



 TOC 

4.1.  Requesting a Ticket

A client MAY request a ticket in the following exchanges:

Normally, a client requests a ticket in the third message of an IKEv2 exchange (the first of IKE_AUTH). Figure 2 (Example Message Exchange for Requesting a Ticket) shows the message exchange for this typical case.




  Initiator                Responder
  -----------              -----------
 HDR, SAi1, KEi, Ni  -->

                     <--    HDR, SAr1, KEr, Nr, [CERTREQ]

 HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr, N(TICKET_REQUEST)}     -->

 Figure 2: Example Message Exchange for Requesting a Ticket 

The notification payloads are described in Section 4.3 (IKE Notifications). The above is an example, and IKEv2 allows a number of variants on these messages. A complete description of IKEv2 can be found in [RFC4718] (Eronen, P. and P. Hoffman, “IKEv2 Clarifications and Implementation Guidelines,” October 2006.).

When an IKEv2 responder receives a request for a ticket using the N(TICKET_REQUEST) payload it MUST perform one of the following operations if it supports the extension defined in this document:

Provided the IKEv2 exchange was successful, the IKEv2 initiator can accept the requested ticket. The ticket may be used later with an IKEv2 responder that supports this extension. Figure 3 (Receiving a Ticket) shows how the initiator receives the ticket.




  Initiator                Responder
  -----------              -----------
         <--    HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi,
                     TSr, N(TICKET_OPAQUE) [,N(TICKET_GATEWAY_LIST)]}

 Figure 3: Receiving a Ticket 



 TOC 

4.2.  Presenting a Ticket

A client MAY initiate a regular (non-ticket-based) IKEv2 exchange even if it is in possession of a valid ticket. A client MUST NOT present a ticket when it knows that the ticket's lifetime has expired.

It is up to the client's local policy to decide when the communication with the IKEv2 responder is seen as interrupted and a new exchange needs to be initiated and the session resumption procedure to be initiated.

Tickets are intended for one-time use: a client MUST NOT reuse a ticket, either with the same or with a different gateway. A gateway SHOULD reject a reused ticket.

This document specifies a new IKEv2 exchange type called IKE_SESSION_RESUME whose value is TBA by IANA. This exchange is somewhat similar to the IKE_AUTH exchange, and results in the creation of a Child SA. The client SHOULD NOT use this exchange type unless it knows that the gateway supports it.


 Initiator                Responder
 -----------              -----------
 HDR, Ni, N(TICKET_OPAQUE), [N+,]
      SK {IDi, [IDr,] SAi2, TSi, TSr [, CP(CFG_REQUEST)]} -->

The exchange type in HDR is set to 'IKE_SESSION_RESUME'.

See Section 4.2.1 (Protection of the IKE_SESSION_RESUME Exchange) for details on computing the protected (SK) payload.

When the IKEv2 responder receives a ticket using the N(TICKET_OPAQUE) payload it MUST perform one of the following steps if it supports the extension defined in this document:




 Initiator                Responder
 -----------              -----------
                 <--  HDR, SK {IDr, Nr, SAr2, [TSi, TSr],
                      [CP(CFG_REPLY)]}

 Figure 4: IKEv2 Responder accepts the ticket 

Again, the exchange type in HDR is set to 'IKE_SESSION_RESUME'.

The SK payload is protected using the cryptographic parameters derived from the ticket, see Section 4.2.1 (Protection of the IKE_SESSION_RESUME Exchange) below.

At this point a new IKE SA is created by both parties, see Section 4.5 (Processing Guidelines for IKE SA Establishment). This is followed by normal derivation of a child SA, per Section 2.17 of [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” December 2005.).



 TOC 

4.2.1.  Protection of the IKE_SESSION_RESUME Exchange

The two messages of this exchange are protected by a "subset" IKE SA. The key material is derived from the ticket, as follows:


     {SK_d2 | SK_ai | SK_ar | SK_ei | SK_er} = prf+(SK_d_old, Ni)

where SK_d_old is the SK_d value of the original IKE SA, as retrieved from the ticket. Ni guarantees freshness of the key material. SK_d2 is used later to derive the new IKE SA, see Section 4.5 (Processing Guidelines for IKE SA Establishment).

See [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” December 2005.) for the notation. "prf" is determined from the SA value in the ticket.



 TOC 

4.2.2.  Presenting a Ticket: The DoS Case

When receiving the first message of the IKE_SESSION_RESUME exchange, the gateway may decide that it is under a denial-of-service attack. In such a case, the gateway SHOULD defer the establishment of session state until it has verified the identity of the client. We use a variation of the IKEv2 Cookie mechanism, whereby the cookie is protected.

In the two messages that follow, the gateway responds that it is unwilling to resume the session until the client is verified, and the client resubmits its first message, this time with the cookie:


 Initiator                Responder
 -----------              -----------
                 <-- HDR, SK{N(COOKIE)}

HDR, Ni, N(TICKET_OPAQUE), [N+,]
     SK {N(COOKIE), IDi, [IDr,] SAi2, TSi, TSr [, CP(CFG_REQUEST)]} -->

Assuming the cookie is correct, the gateway now replies normally.

This now becomes a 4-message exchange. The entire exchange is protected as defined in Section 4.2.1 (Protection of the IKE_SESSION_RESUME Exchange).

See Section 2.6 and Section 3.10.1 of [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” December 2005.) for more guidance regarding the usage and syntax of the cookie. Note that the cookie is completely independent of the IKEv2 ticket.



 TOC 

4.2.3.  Requesting a ticket during resumption

When resuming a session, a client will typically request a new ticket immediately, so it is able to resume the session again in the case of a second failure. Therefore, the N(TICKET_REQUEST) and N(TICKET_OPAQUE) notifications may be piggybacked as protected payloads to the IKE_SESSION_RESUME exchange.

The returned ticket (if any) will correspond to the IKE SA created per the rules described in Section 4.5 (Processing Guidelines for IKE SA Establishment).



 TOC 

4.3.  IKE Notifications

This document defines a number of notifications. The notification numbers are TBA by IANA.

Notification NameNumberData
TICKET_OPAQUE TBA1 See Section 4.4 (TICKET_OPAQUE Notify Payload)
TICKET_REQUEST TBA2 None
TICKET_ACK TBA3 None
TICKET_NACK TBA4 None



 TOC 

4.4.  TICKET_OPAQUE Notify Payload

The data for the TICKET_OPAQUE Notify payload consists of the Notify message header, a lifetime field and the ticket itself. The four octet lifetime field contains the number of seconds until the ticket expires (encoded as an unsigned integer).



       0                     1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  Reserved   !      Payload Length           !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Protocol ID   ! SPI Size = 0  !    Notify Message Type        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                       Lifetime                                !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                        Ticket                                 ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Figure 5: TICKET_OPAQUE Notify Payload 



 TOC 

4.5.  Processing Guidelines for IKE SA Establishment

When a ticket is presented, the gateway parses the ticket to retrieve the state of the old IKE SA, and the client retrieves this state from its local store. Both peers now create state for the new IKE SA as follows:

The cryptographic material is refreshed based on the ticket and the nonce values, Ni, and Nr, from the current exchange. A new SKEYSEED value is derived as follows:


     SKEYSEED = prf(SK_d2, Ni | Nr)

where SK_d2 was computed earlier (Section 4.2.1 (Protection of the IKE_SESSION_RESUME Exchange)).

The keys are derived as follows, unchanged from IKEv2:


     {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr} =
                                 prf+(SKEYSEED, Ni | Nr | SPIi | SPIr)

where SPIi, SPIr are the SPI values created in the new IKE exchange.

See [RFC4306] (Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” December 2005.) for the notation. "prf" is determined from the SA value in the ticket.



 TOC 

5.  Ticket Recommendations



 TOC 

5.1.  Ticket Content

The ticket MUST encode at least the following state from an IKE SA. These values MUST be encrypted and authenticated.

In addition, the ticket MUST encode a protected ticket expiration value.

The ticket MUST include a key identity field, so that encryption and authentication can be changed, and when necessary, algorithms can be replaced.



 TOC 

5.2.  Ticket Identity and Lifecycle

Each ticket is associated with a single IKE SA. In particular, when an IKE SA is deleted, the client MUST delete its stored ticket. A ticket is therefore associated with the tuple (IDi, IDr).

The lifetime of the ticket carried in the N(TICKET_OPAQUE) notification SHOULD be the minimum of the IKE SA lifetime (per the gateway's local policy) and its re-authentication time, according to [RFC4478] (Nir, Y., “Repeated Authentication in Internet Key Exchange (IKEv2) Protocol,” April 2006.). Even if neither of these are enforced by the gateway, a finite lifetime MUST be specified for the ticket.



 TOC 

6.  IANA Considerations

This document requires a number of IKEv2 notification status types in Section 4.3 (IKE Notifications), to be registered by IANA. The corresponding registry was established by IANA.

The document defines a new IKEv2 exchange in Section 4.2 (Presenting a Ticket). The corresponding registry was established by IANA.



 TOC 

7.  Security Considerations

This section addresses security issues related to the usage of a ticket.



 TOC 

7.1.  Stolen Tickets

An eavesdropper or man-in-the-middle may try to obtain a ticket and use it to establish a session with the IKEv2 responder. This can happen in different ways: by eavesdropping on the initial communication and copying the ticket when it is granted and before it is used, or by listening in on a client's use of the ticket to resume a session. However, since the ticket's contents is encrypted and the attacker does not know the corresponding secret key, a stolen ticket cannot be used by an attacker to succesfully resume a session. An IKEv2 responder MUST use strong encryption and integrity protection of the ticket to prevent an attacker from obtaining the ticket's contents, e.g., by using a brute force attack.



 TOC 

7.2.  Forged Tickets

A malicious user could forge or alter a ticket in order to resume a session, to extend its lifetime, to impersonate as another user, or to gain additional privileges. This attack is not possible if the ticket is protected using a strong integrity protection algorithm.



 TOC 

7.3.  Denial of Service Attacks

An adversary could generate and send a large number of tickets to a gateway for verification. To minimize the possibility of such denial of service, ticket verification should be lightweight (e.g., using efficient symmetric key cryptographic algorithms).



 TOC 

7.4.  Ticket Protection Key Management

A full description of the management of the keys used to protect the ticket is beyond the scope of this document. A list of RECOMMENDED practices is given below.



 TOC 

7.5.  Ticket Lifetime

An IKEv2 responder controls the lifetime of a ticket, based on the operational and security requirements of the environment in which it is deployed. The responder provides information about the ticket lifetime to the IKEv2 initiator, allowing it to manage its tickets.



 TOC 

7.6.  Ticket Format

Great care must be taken when defining a ticket format such that the requirements outlined in Section 5.1 (Ticket Content) are met. In particular, if confidential information, such as a secret key, is transferred to the client, it MUST be done using secure communication to prevent attackers from obtaining or modifying the key. Also, the ticket MUST have its integrity and confidentiality protected with strong cryptographic techniques to prevent a breach in the security of the system.



 TOC 

7.7.  Identity Privacy, Anonymity, and Unlinkability

This document mandates that the content of the ticket MUST be encrypted in order to avoid leakage of information, such as the identities of an IKEv2 initiator and a responder. Thus, it prevents the disclosure of potentially sensitive information carried within the ticket.

When an IKEv2 initiator presents the ticket as part of the IKE_SESSION_RESUME exchange, confidentiality is not provided for the exchange. Although the ticket itself is encrypted there might still be a possibility for an on-path adversary to observe multiple exchange handshakes where the same ticket is used and therefore to conclude that they belong to the same communication end points. Administrators that use the ticket mechanism described in this document should be aware that unlinkability may not be provided by this mechanism. Note, however, that IKEv2 does not provide active user identity confidentiality for the IKEv2 initiator either.



 TOC 

7.8.  Replay Protection in the IKE_SESSION_RESUME Exchange

A major design goal of this protocol extension has been the two-message exchange for session resumption. There is a tradeoff between this abbreviated exchange and replay protection. It is RECOMMENDED that a gateway should cache tickets, and reject replayed ones. However, some gateways may not do that in order to reduce state size. An adversary may attempt to replay a ticket. To mitigate these risks a client may be required by the gateway to show that it knows the ticket's secret, before any state is committed on the gateway side. Note that this is a stronger guarantee than the regular IKE cookie mechanism, which only shows IP return routability of the client. This is enabled by including the cookie in the protected portion of the message.

For performance reasons, the cookie mechanism is optional, and invoked by the gateway only when it suspects that it is the subject of a denial-of-service attack.

In any case, a ticket replayed by an adversary only causes partial IKE state to be created on the gateway. The IKE exchange cannot be completed and an IKE SA cannot be created unless the client knows the ticket's secret values.



 TOC 

8.  Acknowledgements

We would like to thank Paul Hoffman, Pasi Eronen, Florian Tegeler, Xiaoming Fu, Stjepan Gros, Yoav Nir and Tero Kivinen for their many helpful comments. We would to particularly thank Florian Tegeler and Stjepan Gros for their help with their implementation efforts and Florian Tegeler for his formal verification using the CASPER tool set.



 TOC 

9.  References



 TOC 

9.1. Normative References

[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML).
[RFC4306] Kaufman, C., “Internet Key Exchange (IKEv2) Protocol,” RFC 4306, December 2005 (TXT).


 TOC 

9.2. Informative References

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106, RFC 4086, June 2005 (TXT).
[RFC4301] Kent, S. and K. Seo, “Security Architecture for the Internet Protocol,” RFC 4301, December 2005 (TXT).
[RFC4478] Nir, Y., “Repeated Authentication in Internet Key Exchange (IKEv2) Protocol,” RFC 4478, April 2006 (TXT).
[RFC4507] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig, “Transport Layer Security (TLS) Session Resumption without Server-Side State,” RFC 4507, May 2006 (TXT).
[RFC4555] Eronen, P., “IKEv2 Mobility and Multihoming Protocol (MOBIKE),” RFC 4555, June 2006 (TXT).
[RFC4718] Eronen, P. and P. Hoffman, “IKEv2 Clarifications and Implementation Guidelines,” RFC 4718, October 2006 (TXT).


 TOC 

Appendix A.  Change Log



 TOC 

A.1.  -00

Issued a -00 version for the IPSECME working group. Reflected discussions at IETF#72 regarding the strict focus on session resumption. Consequently, text about failover was removed.



 TOC 

A.2.  -04

Editorial fixes; references cleaned up; updated author's contact address



 TOC 

A.3.  -03

Removed counter mechanism. Added an optional anti-DoS mechanism, based on IKEv2 cookies (removed previous discussion of cookies). Clarified that gateways may support reallocation of same IP address, if provided by network. Proposed a solution outline to the problem of key exchange for the keys that protect tickets. Added fields to the ticket to enable interoperability. Removed incorrect MOBIKE notification.



 TOC 

A.4.  -02

Clarifications on generation of SPI values, on the ticket's lifetime and on the integrity protection of the anti-replay counter. Eliminated redundant SPIs from the notification payloads.



 TOC 

A.5.  -01

Editorial review. Removed 24-hour limitation on ticket lifetime, lifetime is up to local policy.



 TOC 

A.6.  -00

Initial version. This draft is a selective merge of draft-sheffer-ike-session-resumption-00 and draft-dondeti-ipsec-failover-sol-00.



 TOC 

Authors' Addresses

  Yaron Sheffer
  Check Point Software Technologies Ltd.
  5 Hasolelim St.
  Tel Aviv 67897
  Israel
Email:  yaronf@checkpoint.com
  
  Hannes Tschofenig
  Nokia Siemens Networks
  Linnoitustie 6
  Espoo 02600
  Finland
Phone:  +358 (50) 4871445
Email:  Hannes.Tschofenig@gmx.net
URI:  http://www.tschofenig.priv.at
  
  Lakshminath Dondeti
  QUALCOMM, Inc.
  5775 Morehouse Dr
  San Diego, CA
  USA
Phone:  +1 858-845-1267
Email:  ldondeti@qualcomm.com
  
  Vidya Narayanan
  QUALCOMM, Inc.
  5775 Morehouse Dr
  San Diego, CA
  USA
Phone:  +1 858-845-2483
Email:  vidyan@qualcomm.com


 TOC 

Full Copyright Statement

Intellectual Property