Internet-Draft | eBPF ISA | March 2023 |
Thaler | Expires 14 September 2023 | [Page] |
This document specifies version 1.0 of the eBPF instruction set.¶
The eBPF instruction set consists of eleven 64 bit registers, a program counter, and an implementation-specific amount (e.g., 512 bytes) of stack space.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 14 September 2023.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
For brevity, this document uses the type notion "u64", "u32", etc. to mean an unsigned integer whose width is the specified number of bits, and "s32", etc. to mean a signed integer of the specified number of bits.¶
eBPF has 10 general purpose registers and a read-only frame pointer register, all of which are 64-bits wide.¶
The eBPF calling convention is defined as:¶
Registers R0 - R5 are caller-saved registers, meaning the BPF program needs to either spill them to the BPF stack or move them to callee saved registers if these arguments are to be reused across multiple function calls. Spilling means that the value in the register is moved to the BPF stack. The reverse operation of moving the variable from the BPF stack to the register is called filling. The reason for spilling/filling is due to the limited number of registers.¶
Upon entering execution of an eBPF program, registers R1 - R5 initially can contain the input arguments for the program (similar to the argc/argv pair for a typical C program). The actual number of registers used, and their meaning, is defined by the program type; for example, a networking program might have an argument that includes network packet data and/or metadata.¶
An eBPF program is a sequence of instructions.¶
eBPF has two instruction encodings:¶
The fields conforming an encoded basic instruction are stored in the following order:¶
opcode:8 src_reg:4 dst_reg:4 offset:16 imm:32 // In little-endian BPF. opcode:8 dst_reg:4 src_reg:4 offset:16 imm:32 // In big-endian BPF.¶
Note that the contents of multi-byte fields ('imm' and 'offset') are stored using big-endian byte ordering in big-endian BPF and little-endian byte ordering in little-endian BPF.¶
For example:¶
opcode offset imm assembly src_reg dst_reg 07 0 1 00 00 44 33 22 11 r1 += 0x11223344 // little dst_reg src_reg 07 1 0 00 00 11 22 33 44 r1 += 0x11223344 // big¶
Note that most instructions do not use all of the fields. Unused fields must be set to zero.¶
As discussed below in 64-bit immediate instructions (Section 5.3), a 64-bit immediate instruction uses a 64-bit immediate value that is constructed as follows. The 64 bits following the basic instruction contain a pseudo instruction using the same format but with opcode, dst_reg, src_reg, and offset all set to zero, and imm containing the high 32 bits of the immediate value.¶
This is depicted in the following figure:¶
basic_instruction .-----------------------------. | | code:8 regs:8 offset:16 imm:32 unused:32 imm:32 | | '--------------' pseudo instruction¶
Thus the 64-bit immediate value is constructed as follows:¶
imm64 = (next_imm << 32) | imm¶
where 'next_imm' refers to the imm value of the pseudo instruction following the basic instruction. The unused bytes in the pseudo instruction are reserved and shall be cleared to zero.¶
The encoding of the 'opcode' field varies and can be determined from the three least significant bits (LSB) of the 'opcode' field which holds the "instruction class", as follows:¶
class | value | description | reference |
---|---|---|---|
BPF_LD¶ |
0x00¶ |
non-standard load operations¶ |
|
BPF_LDX¶ |
0x01¶ |
load into register operations¶ |
|
BPF_ST¶ |
0x02¶ |
store from immediate operations¶ |
|
BPF_STX¶ |
0x03¶ |
store from register operations¶ |
|
BPF_ALU¶ |
0x04¶ |
32-bit arithmetic operations¶ |
|
BPF_JMP¶ |
0x05¶ |
64-bit jump operations¶ |
|
BPF_JMP32¶ |
0x06¶ |
32-bit jump operations¶ |
|
BPF_ALU64¶ |
0x07¶ |
64-bit arithmetic operations¶ |
For arithmetic and jump instructions (BPF_ALU
, BPF_ALU64
, BPF_JMP
and
BPF_JMP32
), the 8-bit 'opcode' field is divided into three parts:¶
4 bits (MSB) | 1 bit | 3 bits (LSB) |
---|---|---|
code¶ |
source¶ |
instruction class¶ |
source | value | description |
---|---|---|
BPF_K¶ |
0x00¶ |
use 32-bit 'imm' value as source operand¶ |
BPF_X¶ |
0x08¶ |
use 'src_reg' register value as source operand¶ |
Instruction class BPF_ALU
uses 32-bit wide operands (zeroing the upper 32 bits
of the destination register) while BPF_ALU64
uses 64-bit wide operands for
otherwise identical operations.
The 'code' field encodes the operation as below, where 'src' and 'dst' refer
to the values of the source and destination registers, respectively.¶
code | value | description |
---|---|---|
BPF_ADD¶ |
0x00¶ |
dst += src¶ |
BPF_SUB¶ |
0x10¶ |
dst -= src¶ |
BPF_MUL¶ |
0x20¶ |
dst *= src¶ |
BPF_DIV¶ |
0x30¶ |
dst = (src != 0) ? (dst / src) : 0¶ |
BPF_OR¶ |
0x40¶ |
dst |= src¶ |
BPF_AND¶ |
0x50¶ |
dst &= src¶ |
BPF_LSH¶ |
0x60¶ |
dst <<= src¶ |
BPF_RSH¶ |
0x70¶ |
dst >>= src¶ |
BPF_NEG¶ |
0x80¶ |
dst = ~src¶ |
BPF_MOD¶ |
0x90¶ |
dst = (src != 0) ? (dst % src) : dst¶ |
BPF_XOR¶ |
0xa0¶ |
dst ^= src¶ |
BPF_MOV¶ |
0xb0¶ |
dst = src¶ |
BPF_ARSH¶ |
0xc0¶ |
sign extending shift right¶ |
BPF_END¶ |
0xd0¶ |
byte swap operations (see Byte swap instructions (Section 4.1.1) below)¶ |
Underflow and overflow are allowed during arithmetic operations, meaning
the 64-bit or 32-bit value will wrap. If eBPF program execution would
result in division by zero, the destination register is instead set to zero.
If execution would result in modulo by zero, for BPF_ALU64
the value of
the destination register is unchanged whereas for BPF_ALU
the upper
32 bits of the destination register are zeroed.¶
Examples:¶
BPF_ADD | BPF_X | BPF_ALU
(0x0c) means:¶
dst = (u32) ((u32) dst + (u32) src)¶
where '(u32)' indicates that the upper 32 bits are zeroed.¶
BPF_ADD | BPF_X | BPF_ALU64
(0x0f) means:¶
dst = dst + src¶
BPF_XOR | BPF_K | BPF_ALU
(0xa4) means:¶
dst = (u32) dst ^ (u32) imm32¶
BPF_XOR | BPF_K | BPF_ALU64
(0xa7) means:¶
dst = dst ^ imm32¶
Also note that the division and modulo operations are unsigned. Thus, for
BPF_ALU
, 'imm' is first interpreted as an unsigned 32-bit value, whereas
for BPF_ALU64
, 'imm' is first sign extended to 64 bits and the result
interpreted as an unsigned 64-bit value. There are no instructions for
signed division or modulo.¶
The byte swap instructions use an instruction class of BPF_ALU
and a 4-bit
'code' field of BPF_END
.¶
The byte swap instructions operate on the destination register only and do not use a separate source register or immediate value.¶
Byte swap instructions use the 1-bit 'source' field in the 'opcode' field as follows. Instead of indicating the source operator, it is instead used to select what byte order the operation converts from or to:¶
source | value | description |
---|---|---|
BPF_TO_LE¶ |
0x00¶ |
convert between host byte order and little endian¶ |
BPF_TO_BE¶ |
0x08¶ |
convert between host byte order and big endian¶ |
The 'imm' field encodes the width of the swap operations. The following widths are supported: 16, 32 and 64. The following table summarizes the resulting possibilities:¶
opcode construction | opcode | imm | mnemonic | pseudocode |
---|---|---|---|---|
BPF_END | BPF_TO_LE | BPF_ALU¶ |
0xd4¶ |
16¶ |
le16 dst¶ |
dst = htole16(dst)¶ |
BPF_END | BPF_TO_LE | BPF_ALU¶ |
0xd4¶ |
32¶ |
le32 dst¶ |
dst = htole32(dst)¶ |
BPF_END | BPF_TO_LE | BPF_ALU¶ |
0xd4¶ |
64¶ |
le64 dst¶ |
dst = htole64(dst)¶ |
BPF_END | BPF_TO_BE | BPF_ALU¶ |
0xdc¶ |
16¶ |
be16 dst¶ |
dst = htobe16(dst)¶ |
BPF_END | BPF_TO_BE | BPF_ALU¶ |
0xdc¶ |
32¶ |
be32 dst¶ |
dst = htobe32(dst)¶ |
BPF_END | BPF_TO_BE | BPF_ALU¶ |
0xdc¶ |
64¶ |
be64 dst¶ |
dst = htobe64(dst)¶ |
where¶
Instruction class BPF_JMP32
uses 32-bit wide operands while BPF_JMP
uses 64-bit wide operands for
otherwise identical operations.¶
The 4-bit 'code' field encodes the operation as below, where PC is the program counter:¶
code | value | src | description | notes |
---|---|---|---|---|
BPF_JA¶ |
0x0¶ |
0x0¶ |
PC += offset¶ |
BPF_JMP only¶ |
BPF_JEQ¶ |
0x1¶ |
any¶ |
PC += offset if dst == src¶ |
|
BPF_JGT¶ |
0x2¶ |
any¶ |
PC += offset if dst > src¶ |
unsigned¶ |
BPF_JGE¶ |
0x3¶ |
any¶ |
PC += offset if dst >= src¶ |
unsigned¶ |
BPF_JSET¶ |
0x4¶ |
any¶ |
PC += offset if dst & src¶ |
|
BPF_JNE¶ |
0x5¶ |
any¶ |
PC += offset if dst != src¶ |
|
BPF_JSGT¶ |
0x6¶ |
any¶ |
PC += offset if dst > src¶ |
signed¶ |
BPF_JSGE¶ |
0x7¶ |
any¶ |
PC += offset if dst >= src¶ |
signed¶ |
BPF_CALL¶ |
0x8¶ |
0x0¶ |
call platform-agnostic helper function imm¶ |
|
BPF_CALL¶ |
0x8¶ |
0x1¶ |
call PC += offset¶ |
|
BPF_CALL¶ |
0x8¶ |
0x2¶ |
call platform-specific helper function imm¶ |
|
BPF_EXIT¶ |
0x9¶ |
0x0¶ |
return¶ |
BPF_JMP only¶ |
BPF_JLT¶ |
0xa¶ |
any¶ |
PC += offset if dst < src¶ |
unsigned¶ |
BPF_JLE¶ |
0xb¶ |
any¶ |
PC += offset if dst <= src¶ |
unsigned¶ |
BPF_JSLT¶ |
0xc¶ |
any¶ |
PC += offset if dst < src¶ |
signed¶ |
BPF_JSLE¶ |
0xd¶ |
any¶ |
PC += offset if dst <= src¶ |
signed¶ |
Example:¶
BPF_JSGE | BPF_X | BPF_JMP32
(0x7e) means:¶
if (s32)dst s>= (s32)src goto +offset¶
where 's>=' indicates a signed '>=' comparison.¶
Platform-agnostic helper functions are a concept whereby BPF programs can call
into a set of function calls exposed by the runtime. Each helper
function is identified by an integer used in a BPF_CALL
instruction.
The available platform-agnostic helper functions may differ for each program
type, but integer values are unique across all program types.¶
Platform-specific helper functions are helper functions that are unique to a particular platform. They use a separate integer numbering space from platform-agnostic helper functions, but otherwise the same considerations apply. Platforms are not required to implement any platform-specific functions.¶
BPF-local functions are functions exposed by the same BPF program as the caller,
and are referenced by offset from the call instruction, similar to BPF_JA
.
A BPF_EXIT
within the BPF-local function will return to the caller.¶
For load and store instructions (BPF_LD
, BPF_LDX
, BPF_ST
, and BPF_STX
), the
8-bit 'opcode' field is divided as:¶
3 bits (MSB) | 2 bits | 3 bits (LSB) |
---|---|---|
mode¶ |
size¶ |
instruction class¶ |
mode modifier | value | description | reference |
---|---|---|---|
BPF_IMM¶ |
0x00¶ |
64-bit immediate instructions¶ |
|
BPF_ABS¶ |
0x20¶ |
legacy BPF packet access (absolute)¶ |
|
BPF_IND¶ |
0x40¶ |
legacy BPF packet access (indirect)¶ |
|
BPF_MEM¶ |
0x60¶ |
regular load and store operations¶ |
|
BPF_ATOMIC¶ |
0xc0¶ |
atomic operations¶ |
size modifier | value | description |
---|---|---|
BPF_W¶ |
0x00¶ |
word (4 bytes)¶ |
BPF_H¶ |
0x08¶ |
half word (2 bytes)¶ |
BPF_B¶ |
0x10¶ |
byte¶ |
BPF_DW¶ |
0x18¶ |
double word (8 bytes)¶ |
The BPF_MEM
mode modifier is used to encode regular load and store
instructions that transfer data between a register and memory.¶
BPF_MEM | <size> | BPF_STX
means:¶
*(size *) (dst + offset) = src¶
BPF_MEM | <size> | BPF_ST
means:¶
*(size *) (dst + offset) = imm32¶
BPF_MEM | <size> | BPF_LDX
means:¶
dst = *(size *) (src + offset)¶
where size is one of: BPF_B
, BPF_H
, BPF_W
, or BPF_DW
.¶
Atomic operations are operations that operate on memory and can not be interrupted or corrupted by other access to the same memory region by other eBPF programs or means outside of this specification.¶
All atomic operations supported by eBPF are encoded as store operations
that use the BPF_ATOMIC
mode modifier as follows:¶
BPF_ATOMIC | BPF_W | BPF_STX
(0xc3) for 32-bit operations¶
BPF_ATOMIC | BPF_DW | BPF_STX
(0xdb) for 64-bit operations¶
Note that 8-bit (BPF_B
) and 16-bit (BPF_H
) wide atomic operations are not supported,
nor is BPF_ATOMIC | <size> | BPF_ST
.¶
The 'imm' field is used to encode the actual atomic operation. Simple atomic operation use a subset of the values defined to encode arithmetic operations in the 'imm' field to encode the atomic operation:¶
imm | value | description |
---|---|---|
BPF_ADD¶ |
0x00¶ |
atomic add¶ |
BPF_OR¶ |
0x40¶ |
atomic or¶ |
BPF_AND¶ |
0x50¶ |
atomic and¶ |
BPF_XOR¶ |
0xa0¶ |
atomic xor¶ |
BPF_ATOMIC | BPF_W | BPF_STX
(0xc3) with 'imm' = BPF_ADD means:¶
*(u32 *)(dst + offset) += src¶
BPF_ATOMIC | BPF_DW | BPF_STX
(0xdb) with 'imm' = BPF ADD means:¶
*(u64 *)(dst + offset) += src¶
In addition to the simple atomic operations above, there also is a modifier and two complex atomic operations:¶
imm | value | description |
---|---|---|
BPF_FETCH¶ |
0x01¶ |
modifier: return old value¶ |
BPF_XCHG¶ |
0xe0 | BPF_FETCH¶ |
atomic exchange¶ |
BPF_CMPXCHG¶ |
0xf0 | BPF_FETCH¶ |
atomic compare and exchange¶ |
The BPF_FETCH
modifier is optional for simple atomic operations, and
always set for the complex atomic operations. If the BPF_FETCH
flag
is set, then the operation also overwrites src
with the value that
was in memory before it was modified.¶
The BPF_XCHG
operation atomically exchanges src
with the value
addressed by dst + offset
.¶
The BPF_CMPXCHG
operation atomically compares the value addressed by
dst + offset
with R0
. If they match, the value addressed by
dst + offset
is replaced with src
. In either case, the
value that was at dst + offset
before the operation is zero-extended
and loaded back to R0
.¶
Instructions with the BPF_IMM
'mode' modifier use the wide instruction
encoding defined in Instruction encoding (Section 3), and use the 'src' field of the
basic instruction to hold an opcode subtype.¶
The following instructions are defined, and use additional concepts defined below:¶
opcode construction | opcode | src | pseudocode | imm type | dst type |
---|---|---|---|---|---|
BPF_IMM | BPF_DW | BPF_LD¶ |
0x18¶ |
0x0¶ |
dst = imm64¶ |
integer¶ |
integer¶ |
BPF_IMM | BPF_DW | BPF_LD¶ |
0x18¶ |
0x1¶ |
dst = map_by_fd(imm)¶ |
map fd¶ |
map¶ |
BPF_IMM | BPF_DW | BPF_LD¶ |
0x18¶ |
0x2¶ |
dst = mva(map_by_fd(imm)) + next_imm¶ |
map fd¶ |
data pointer¶ |
BPF_IMM | BPF_DW | BPF_LD¶ |
0x18¶ |
0x3¶ |
dst = variable_addr(imm)¶ |
variable id¶ |
data pointer¶ |
BPF_IMM | BPF_DW | BPF_LD¶ |
0x18¶ |
0x4¶ |
dst = code_addr(imm)¶ |
integer¶ |
code pointer¶ |
BPF_IMM | BPF_DW | BPF_LD¶ |
0x18¶ |
0x5¶ |
dst = map_by_idx(imm)¶ |
map index¶ |
map¶ |
BPF_IMM | BPF_DW | BPF_LD¶ |
0x18¶ |
0x6¶ |
dst = mva(map_by_idx(imm)) + next_imm¶ |
map index¶ |
data pointer¶ |
where¶
Maps are shared memory regions accessible by eBPF programs on some platforms, where we use the term "map object" to refer to an object containing the data and metadata (e.g., size) about the memory region. A map can have various semantics as defined in a separate document, and may or may not have a single contiguous memory region, but the 'mva(map)' is currently only defined for maps that do have a single contiguous memory region. Support for maps is optional.¶
Each map object can have a POSIX file descriptor (fd) if supported by the platform, where 'map_by_fd(fd)' means to get the map with the specified file descriptor. Each eBPF program can also be defined to use a set of maps associated with the program at load time, and 'map_by_index(index)' means to get the map with the given index in the set associated with the eBPF program containing the instruction.¶
eBPF previously introduced special instructions for access to packet data that were carried over from classic BPF. However, these instructions are deprecated and should no longer be used.¶
This draft was generated from instruction-set.rst in the Linux kernel repository, to which a number of other individuals have contributed over time, including Akhil Raj, Christoph Hellwig, Jose E. Marchesi, Kosuke Fujimoto, Shahab Vahedi, Tiezhu Yang, and Zheng Yejian, with review and suggestions by many others including Alan Jowett, Alexei Starovoitov, Andrii Nakryiko, Daniel Borkmann, David Vernet, Jim Harris, Quentin Monnet, Song Liu, Shung-Hsi Yu, Stanislav Fomichev, and Yonghong Song.¶
For reference, the following table lists opcodes in order by value.¶
opcode | src | imm | description | reference |
---|---|---|---|---|
0x00¶ |
0x0¶ |
any¶ |
(additional immediate value)¶ |
|
0x04¶ |
0x0¶ |
any¶ |
dst = (u32)((u32)dst + (u32)imm)¶ |
|
0x05¶ |
0x0¶ |
0x00¶ |
goto +offset¶ |
|
0x07¶ |
0x0¶ |
any¶ |
dst += imm¶ |
|
0x0c¶ |
any¶ |
0x00¶ |
dst = (u32)((u32)dst + (u32)src)¶ |
|
0x0f¶ |
any¶ |
0x00¶ |
dst += src¶ |
|
0x14¶ |
0x0¶ |
any¶ |
dst = (u32)((u32)dst - (u32)imm)¶ |
|
0x15¶ |
0x0¶ |
any¶ |
if dst == imm goto +offset¶ |
|
0x16¶ |
0x0¶ |
any¶ |
if (u32)dst == imm goto +offset¶ |
|
0x17¶ |
0x0¶ |
any¶ |
dst -= imm¶ |
|
0x18¶ |
0x0¶ |
any¶ |
dst = imm64¶ |
|
0x18¶ |
0x1¶ |
any¶ |
dst = map_by_fd(imm)¶ |
|
0x18¶ |
0x2¶ |
any¶ |
dst = mva(map_by_fd(imm)) + next_imm¶ |
|
0x18¶ |
0x3¶ |
any¶ |
dst = variable_addr(imm)¶ |
|
0x18¶ |
0x4¶ |
any¶ |
dst = code_addr(imm)¶ |
|
0x18¶ |
0x5¶ |
any¶ |
dst = map_by_idx(imm)¶ |
|
0x18¶ |
0x6¶ |
any¶ |
dst = mva(map_by_idx(imm)) + next_imm¶ |
|
0x1c¶ |
any¶ |
0x00¶ |
dst = (u32)((u32)dst - (u32)src)¶ |
|
0x1d¶ |
any¶ |
0x00¶ |
if dst == src goto +offset¶ |
|
0x1e¶ |
any¶ |
0x00¶ |
if (u32)dst == (u32)src goto +offset¶ |
|
0x1f¶ |
any¶ |
0x00¶ |
dst -= src¶ |
|
0x20¶ |
any¶ |
any¶ |
(deprecated, implementation-specific)¶ |
|
0x24¶ |
0x0¶ |
any¶ |
dst = (u32)(dst * imm)¶ |
|
0x25¶ |
0x0¶ |
any¶ |
if dst > imm goto +offset¶ |
|
0x26¶ |
0x0¶ |
any¶ |
if (u32)dst > imm goto +offset¶ |
|
0x27¶ |
0x0¶ |
any¶ |
dst *= imm¶ |
|
0x28¶ |
any¶ |
any¶ |
(deprecated, implementation-specific)¶ |
|
0x2c¶ |
any¶ |
0x00¶ |
dst = (u32)(dst * src)¶ |
|
0x2d¶ |
any¶ |
0x00¶ |
if dst > src goto +offset¶ |
|
0x2e¶ |
any¶ |
0x00¶ |
if (u32)dst > (u32)src goto +offset¶ |
|
0x2f¶ |
any¶ |
0x00¶ |
dst *= src¶ |
|
0x30¶ |
any¶ |
any¶ |
(deprecated, implementation-specific)¶ |
|
0x34¶ |
0x0¶ |
any¶ |
dst = (u32)((imm != 0) ? (dst / imm) : 0)¶ |
|
0x35¶ |
0x0¶ |
any¶ |
if dst >= imm goto +offset¶ |
|
0x36¶ |
0x0¶ |
any¶ |
if (u32)dst >= imm goto +offset¶ |
|
0x37¶ |
0x0¶ |
any¶ |
dst = (imm != 0) ? (dst / imm) : 0¶ |
|
0x38¶ |
any¶ |
any¶ |
(deprecated, implementation-specific)¶ |
|
0x3c¶ |
any¶ |
0x00¶ |
dst = (u32)((imm != 0) ? (dst / src) : 0)¶ |
|
0x3d¶ |
any¶ |
0x00¶ |
if dst >= src goto +offset¶ |
|
0x3e¶ |
any¶ |
0x00¶ |
if (u32)dst >= (u32)src goto +offset¶ |
|
0x3f¶ |
any¶ |
0x00¶ |
dst = (src !+ 0) ? (dst / src) : 0¶ |
|
0x40¶ |
any¶ |
any¶ |
(deprecated, implementation-specific)¶ |
|
0x44¶ |
0x0¶ |
any¶ |
dst = (u32)(dst | imm)¶ |
|
0x45¶ |
0x0¶ |
any¶ |
if dst & imm goto +offset¶ |
|
0x46¶ |
0x0¶ |
any¶ |
if (u32)dst & imm goto +offset¶ |
|
0x47¶ |
0x0¶ |
any¶ |
dst |= imm¶ |
|
0x48¶ |
any¶ |
any¶ |
(deprecated, implementation-specific)¶ |
|
0x4c¶ |
any¶ |
0x00¶ |
dst = (u32)(dst | src)¶ |
|
0x4d¶ |
any¶ |
0x00¶ |
if dst & src goto +offset¶ |
|
0x4e¶ |
any¶ |
0x00¶ |
if (u32)dst & (u32)src goto +offset¶ |
|
0x4f¶ |
any¶ |
0x00¶ |
dst |= src¶ |
|
0x50¶ |
any¶ |
any¶ |
(deprecated, implementation-specific)¶ |
|
0x54¶ |
0x0¶ |
any¶ |
dst = (u32)(dst & imm)¶ |
|
0x55¶ |
0x0¶ |
any¶ |
if dst != imm goto +offset¶ |
|
0x56¶ |
0x0¶ |
any¶ |
if (u32)dst != imm goto +offset¶ |
|
0x57¶ |
0x0¶ |
any¶ |
dst &= imm¶ |
|
0x58¶ |
any¶ |
any¶ |
(deprecated, implementation-specific)¶ |
|
0x5c¶ |
any¶ |
0x00¶ |
dst = (u32)(dst & src)¶ |
|
0x5d¶ |
any¶ |
0x00¶ |
if dst != src goto +offset¶ |
|
0x5e¶ |
any¶ |
0x00¶ |
if (u32)dst != (u32)src goto +offset¶ |
|
0x5f¶ |
any¶ |
0x00¶ |
dst &= src¶ |
|
0x61¶ |
any¶ |
0x00¶ |
dst = *(u32 *)(src + offset)¶ |
|
0x62¶ |
0x0¶ |
any¶ |
*(u32 *)(dst + offset) = imm¶ |
|
0x63¶ |
any¶ |
0x00¶ |
*(u32 *)(dst + offset) = src¶ |
|
0x64¶ |
0x0¶ |
any¶ |
dst = (u32)(dst << imm)¶ |
|
0x65¶ |
0x0¶ |
any¶ |
if dst s> imm goto +offset¶ |
|
0x66¶ |
0x0¶ |
any¶ |
if (s32)dst s> (s32)imm goto +offset¶ |
|
0x67¶ |
0x0¶ |
any¶ |
dst <<= imm¶ |
|
0x69¶ |
any¶ |
0x00¶ |
dst = *(u16 *)(src + offset)¶ |
|
0x6a¶ |
0x0¶ |
any¶ |
*(u16 *)(dst + offset) = imm¶ |
|
0x6b¶ |
any¶ |
0x00¶ |
*(u16 *)(dst + offset) = src¶ |
|
0x6c¶ |
any¶ |
0x00¶ |
dst = (u32)(dst << src)¶ |
|
0x6d¶ |
any¶ |
0x00¶ |
if dst s> src goto +offset¶ |
|
0x6e¶ |
any¶ |
0x00¶ |
if (s32)dst s> (s32)src goto +offset¶ |
|
0x6f¶ |
any¶ |
0x00¶ |
dst <<= src¶ |
|
0x71¶ |
any¶ |
0x00¶ |
dst = *(u8 *)(src + offset)¶ |
|
0x72¶ |
0x0¶ |
any¶ |
*(u8 *)(dst + offset) = imm¶ |
|
0x73¶ |
any¶ |
0x00¶ |
*(u8 *)(dst + offset) = src¶ |
|
0x74¶ |
0x0¶ |
any¶ |
dst = (u32)(dst >> imm)¶ |
|
0x75¶ |
0x0¶ |
any¶ |
if dst s>= imm goto +offset¶ |
|
0x76¶ |
0x0¶ |
any¶ |
if (s32)dst s>= (s32)imm goto +offset¶ |
|
0x77¶ |
0x0¶ |
any¶ |
dst >>= imm¶ |
|
0x79¶ |
any¶ |
0x00¶ |
dst = *(u64 *)(src + offset)¶ |
|
0x7a¶ |
0x0¶ |
any¶ |
*(u64 *)(dst + offset) = imm¶ |
|
0x7b¶ |
any¶ |
0x00¶ |
*(u64 *)(dst + offset) = src¶ |
|
0x7c¶ |
any¶ |
0x00¶ |
dst = (u32)(dst >> src)¶ |
|
0x7d¶ |
any¶ |
0x00¶ |
if dst s>= src goto +offset¶ |
|
0x7e¶ |
any¶ |
0x00¶ |
if (s32)dst s>= (s32)src goto +offset¶ |
|
0x7f¶ |
any¶ |
0x00¶ |
dst >>= src¶ |
|
0x84¶ |
0x0¶ |
0x00¶ |
dst = (u32)-dst¶ |
|
0x85¶ |
0x0¶ |
any¶ |
call platform-agnostic helper function imm¶ |
|
0x85¶ |
0x1¶ |
any¶ |
call PC += offset¶ |
|
0x85¶ |
0x2¶ |
any¶ |
call platform-specific helper function imm¶ |
|
0x87¶ |
0x0¶ |
0x00¶ |
dst = -dst¶ |
|
0x94¶ |
0x0¶ |
any¶ |
dst = (u32)((imm != 0) ? (dst % imm) : dst)¶ |
|
0x95¶ |
0x0¶ |
0x00¶ |
return¶ |
|
0x97¶ |
0x0¶ |
any¶ |
dst = (imm != 0) ? (dst % imm) : dst¶ |
|
0x9c¶ |
any¶ |
0x00¶ |
dst = (u32)((src != 0) ? (dst % src) : dst)¶ |
|
0x9f¶ |
any¶ |
0x00¶ |
dst = (src != 0) ? (dst % src) : dst¶ |
|
0xa4¶ |
0x0¶ |
any¶ |
dst = (u32)(dst ^ imm)¶ |
|
0xa5¶ |
0x0¶ |
any¶ |
if dst < imm goto +offset¶ |
|
0xa6¶ |
0x0¶ |
any¶ |
if (u32)dst < imm goto +offset¶ |
|
0xa7¶ |
0x0¶ |
any¶ |
dst ^= imm¶ |
|
0xac¶ |
any¶ |
0x00¶ |
dst = (u32)(dst ^ src)¶ |
|
0xad¶ |
any¶ |
0x00¶ |
if dst < src goto +offset¶ |
|
0xae¶ |
any¶ |
0x00¶ |
if (u32)dst < (u32)src goto +offset¶ |
|
0xaf¶ |
any¶ |
0x00¶ |
dst ^= src¶ |
|
0xb4¶ |
0x0¶ |
any¶ |
dst = (u32) imm¶ |
|
0xb5¶ |
0x0¶ |
any¶ |
if dst <= imm goto +offset¶ |
|
0xa6¶ |
0x0¶ |
any¶ |
if (u32)dst <= imm goto +offset¶ |
|
0xb7¶ |
0x0¶ |
any¶ |
dst = imm¶ |
|
0xbc¶ |
any¶ |
0x00¶ |
dst = (u32) src¶ |
|
0xbd¶ |
any¶ |
0x00¶ |
if dst <= src goto +offset¶ |
|
0xbe¶ |
any¶ |
0x00¶ |
if (u32)dst <= (u32)src goto +offset¶ |
|
0xbf¶ |
any¶ |
0x00¶ |
dst = src¶ |
|
0xc3¶ |
any¶ |
0x00¶ |
lock *(u32 *)(dst + offset) += src¶ |
|
0xc3¶ |
any¶ |
0x01¶ |
lock:¶ *(u32 *)(dst + offset) += src src = *(u32 *)(dst + offset)¶ |
|
0xc3¶ |
any¶ |
0x40¶ |
*(u32 *)(dst + offset) |= src¶ |
|
0xc3¶ |
any¶ |
0x41¶ |
lock:¶ *(u32 *)(dst + offset) |= src src = *(u32 *)(dst + offset)¶ |
|
0xc3¶ |
any¶ |
0x50¶ |
*(u32 *)(dst + offset) &= src¶ |
|
0xc3¶ |
any¶ |
0x51¶ |
lock:¶ *(u32 *)(dst + offset) &= src src = *(u32 *)(dst + offset)¶ |
|
0xc3¶ |
any¶ |
0xa0¶ |
*(u32 *)(dst + offset) ^= src¶ |
|
0xc3¶ |
any¶ |
0xa1¶ |
lock:¶ *(u32 *)(dst + offset) ^= src src = *(u32 *)(dst + offset)¶ |
|
0xc3¶ |
any¶ |
0xe1¶ |
lock:¶ temp = *(u32 *)(dst + offset) *(u32 *)(dst + offset) = src src = temp¶ |
|
0xc3¶ |
any¶ |
0xf1¶ |
lock:¶ temp = *(u32 *)(dst + offset) if *(u32)(dst + offset) == R0 *(u32)(dst + offset) = src R0 = temp¶ |
|
0xc4¶ |
0x0¶ |
any¶ |
dst = (u32)(dst s>> imm)¶ |
|
0xc5¶ |
0x0¶ |
any¶ |
if dst s< imm goto +offset¶ |
|
0xc6¶ |
0x0¶ |
any¶ |
if (s32)dst s< (s32)imm goto +offset¶ |
|
0xc7¶ |
0x0¶ |
any¶ |
dst s>>= imm¶ |
|
0xcc¶ |
any¶ |
0x00¶ |
dst = (u32)(dst s>> src)¶ |
|
0xcd¶ |
any¶ |
0x00¶ |
if dst s< src goto +offset¶ |
|
0xce¶ |
any¶ |
0x00¶ |
if (s32)dst s< (s32)src goto +offset¶ |
|
0xcf¶ |
any¶ |
0x00¶ |
dst s>>= src¶ |
|
0xd4¶ |
0x0¶ |
0x10¶ |
dst = htole16(dst)¶ |
|
0xd4¶ |
0x0¶ |
0x20¶ |
dst = htole32(dst)¶ |
|
0xd4¶ |
0x0¶ |
0x40¶ |
dst = htole64(dst)¶ |
|
0xd5¶ |
0x0¶ |
any¶ |
if dst s<= imm goto +offset¶ |
|
0xd6¶ |
0x0¶ |
any¶ |
if (s32)dst s<= (s32)imm goto +offset¶ |
|
0xdb¶ |
any¶ |
0x00¶ |
lock *(u64 *)(dst + offset) += src¶ |
|
0xdb¶ |
any¶ |
0x01¶ |
lock:¶ *(u64 *)(dst + offset) += src src = *(u64 *)(dst + offset)¶ |
|
0xdb¶ |
any¶ |
0x40¶ |
*(u64 *)(dst + offset) |= src¶ |
|
0xdb¶ |
any¶ |
0x41¶ |
lock:¶ *(u64 *)(dst + offset) |= src lock src = *(u64 *)(dst + offset)¶ |
|
0xdb¶ |
any¶ |
0x50¶ |
*(u64 *)(dst + offset) &= src¶ |
|
0xdb¶ |
any¶ |
0x51¶ |
lock:¶ *(u64 *)(dst + offset) &= src src = *(u64 *)(dst + offset)¶ |
|
0xdb¶ |
any¶ |
0xa0¶ |
*(u64 *)(dst + offset) ^= src¶ |
|
0xdb¶ |
any¶ |
0xa1¶ |
lock:¶ *(u64 *)(dst + offset) ^= src src = *(u64 *)(dst + offset)¶ |
|
0xdb¶ |
any¶ |
0xe1¶ |
lock:¶ temp = *(u64 *)(dst + offset) *(u64 *)(dst + offset) = src src = temp¶ |
|
0xdb¶ |
any¶ |
0xf1¶ |
lock:¶ temp = *(u64 *)(dst + offset) if *(u64)(dst + offset) == R0 *(u64)(dst + offset) = src R0 = temp¶ |
|
0xdc¶ |
0x0¶ |
0x10¶ |
dst = htobe16(dst)¶ |
|
0xdc¶ |
0x0¶ |
0x20¶ |
dst = htobe32(dst)¶ |
|
0xdc¶ |
0x0¶ |
0x40¶ |
dst = htobe64(dst)¶ |
|
0xdd¶ |
any¶ |
0x00¶ |
if dst s<= src goto +offset¶ |
|
0xde¶ |
any¶ |
0x00¶ |
if (s32)dst s<= (s32)src goto +offset¶ |