Internet-Draft eBPF ISA March 2023
Thaler Expires 14 September 2023 [Page]
Workgroup:
Network Working Group
Internet-Draft:
draft-thaler-bpf-isa-00
Published:
Intended Status:
Standards Track
Expires:
Author:
D. Thaler, Ed.
Microsoft

eBPF Instruction Set Specification, v1.0

Abstract

This document specifies version 1.0 of the eBPF instruction set.

The eBPF instruction set consists of eleven 64 bit registers, a program counter, and an implementation-specific amount (e.g., 512 bytes) of stack space.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Table of Contents

1. Documentation conventions

For brevity, this document uses the type notion "u64", "u32", etc. to mean an unsigned integer whose width is the specified number of bits, and "s32", etc. to mean a signed integer of the specified number of bits.

2. Registers and calling convention

eBPF has 10 general purpose registers and a read-only frame pointer register, all of which are 64-bits wide.

The eBPF calling convention is defined as:

Registers R0 - R5 are caller-saved registers, meaning the BPF program needs to either spill them to the BPF stack or move them to callee saved registers if these arguments are to be reused across multiple function calls. Spilling means that the value in the register is moved to the BPF stack. The reverse operation of moving the variable from the BPF stack to the register is called filling. The reason for spilling/filling is due to the limited number of registers.

Upon entering execution of an eBPF program, registers R1 - R5 initially can contain the input arguments for the program (similar to the argc/argv pair for a typical C program). The actual number of registers used, and their meaning, is defined by the program type; for example, a networking program might have an argument that includes network packet data and/or metadata.

3. Instruction encoding

An eBPF program is a sequence of instructions.

eBPF has two instruction encodings:

The fields conforming an encoded basic instruction are stored in the following order:

  opcode:8 src_reg:4 dst_reg:4 offset:16 imm:32 // In little-endian BPF.
  opcode:8 dst_reg:4 src_reg:4 offset:16 imm:32 // In big-endian BPF.
imm
signed integer immediate value
offset
signed integer offset used with pointer arithmetic
src_reg
the source register number (0-10), except where otherwise specified (64-bit immediate instructions (Section 5.3) reuse this field for other purposes)
dst_reg
destination register number (0-10)
opcode
operation to perform

Note that the contents of multi-byte fields ('imm' and 'offset') are stored using big-endian byte ordering in big-endian BPF and little-endian byte ordering in little-endian BPF.

For example:

  opcode                  offset imm          assembly
         src_reg dst_reg
  07     0       1        00 00  44 33 22 11  r1 += 0x11223344 // little
         dst_reg src_reg
  07     1       0        00 00  11 22 33 44  r1 += 0x11223344 // big

Note that most instructions do not use all of the fields. Unused fields must be set to zero.

As discussed below in 64-bit immediate instructions (Section 5.3), a 64-bit immediate instruction uses a 64-bit immediate value that is constructed as follows. The 64 bits following the basic instruction contain a pseudo instruction using the same format but with opcode, dst_reg, src_reg, and offset all set to zero, and imm containing the high 32 bits of the immediate value.

This is depicted in the following figure:

        basic_instruction
  .-----------------------------.
  |                             |
  code:8 regs:8 offset:16 imm:32 unused:32 imm:32
                                 |              |
                                 '--------------'
                                pseudo instruction

Thus the 64-bit immediate value is constructed as follows:

imm64 = (next_imm << 32) | imm

where 'next_imm' refers to the imm value of the pseudo instruction following the basic instruction. The unused bytes in the pseudo instruction are reserved and shall be cleared to zero.

3.1. Instruction classes

The encoding of the 'opcode' field varies and can be determined from the three least significant bits (LSB) of the 'opcode' field which holds the "instruction class", as follows:

Table 1
class value description reference

BPF_LD

0x00

non-standard load operations

Load and store instructions (Section 5)

BPF_LDX

0x01

load into register operations

Load and store instructions (Section 5)

BPF_ST

0x02

store from immediate operations

Load and store instructions (Section 5)

BPF_STX

0x03

store from register operations

Load and store instructions (Section 5)

BPF_ALU

0x04

32-bit arithmetic operations

Arithmetic and jump instructions (Section 4)

BPF_JMP

0x05

64-bit jump operations

Arithmetic and jump instructions (Section 4)

BPF_JMP32

0x06

32-bit jump operations

Arithmetic and jump instructions (Section 4)

BPF_ALU64

0x07

64-bit arithmetic operations

Arithmetic and jump instructions (Section 4)

4. Arithmetic and jump instructions

For arithmetic and jump instructions (BPF_ALU, BPF_ALU64, BPF_JMP and BPF_JMP32), the 8-bit 'opcode' field is divided into three parts:

Table 2
4 bits (MSB) 1 bit 3 bits (LSB)

code

source

instruction class

code
the operation code, whose meaning varies by instruction class
source
the source operand location, which unless otherwise specified is one of:
Table 3
source value description

BPF_K

0x00

use 32-bit 'imm' value as source operand

BPF_X

0x08

use 'src_reg' register value as source operand

instruction class
the instruction class (see Instruction classes (Section 3.1))

4.1. Arithmetic instructions

Instruction class BPF_ALU uses 32-bit wide operands (zeroing the upper 32 bits of the destination register) while BPF_ALU64 uses 64-bit wide operands for otherwise identical operations. The 'code' field encodes the operation as below, where 'src' and 'dst' refer to the values of the source and destination registers, respectively.

Table 4
code value description

BPF_ADD

0x00

dst += src

BPF_SUB

0x10

dst -= src

BPF_MUL

0x20

dst *= src

BPF_DIV

0x30

dst = (src != 0) ? (dst / src) : 0

BPF_OR

0x40

dst |= src

BPF_AND

0x50

dst &= src

BPF_LSH

0x60

dst <<= src

BPF_RSH

0x70

dst >>= src

BPF_NEG

0x80

dst = ~src

BPF_MOD

0x90

dst = (src != 0) ? (dst % src) : dst

BPF_XOR

0xa0

dst ^= src

BPF_MOV

0xb0

dst = src

BPF_ARSH

0xc0

sign extending shift right

BPF_END

0xd0

byte swap operations (see Byte swap instructions (Section 4.1.1) below)

Underflow and overflow are allowed during arithmetic operations, meaning the 64-bit or 32-bit value will wrap. If eBPF program execution would result in division by zero, the destination register is instead set to zero. If execution would result in modulo by zero, for BPF_ALU64 the value of the destination register is unchanged whereas for BPF_ALU the upper 32 bits of the destination register are zeroed.

Examples:

BPF_ADD | BPF_X | BPF_ALU (0x0c) means:

  dst = (u32) ((u32) dst + (u32) src)

where '(u32)' indicates that the upper 32 bits are zeroed.

BPF_ADD | BPF_X | BPF_ALU64 (0x0f) means:

  dst = dst + src

BPF_XOR | BPF_K | BPF_ALU (0xa4) means:

  dst = (u32) dst ^ (u32) imm32

BPF_XOR | BPF_K | BPF_ALU64 (0xa7) means:

  dst = dst ^ imm32

Also note that the division and modulo operations are unsigned. Thus, for BPF_ALU, 'imm' is first interpreted as an unsigned 32-bit value, whereas for BPF_ALU64, 'imm' is first sign extended to 64 bits and the result interpreted as an unsigned 64-bit value. There are no instructions for signed division or modulo.

4.1.1. Byte swap instructions

The byte swap instructions use an instruction class of BPF_ALU and a 4-bit 'code' field of BPF_END.

The byte swap instructions operate on the destination register only and do not use a separate source register or immediate value.

Byte swap instructions use the 1-bit 'source' field in the 'opcode' field as follows. Instead of indicating the source operator, it is instead used to select what byte order the operation converts from or to:

Table 5
source value description

BPF_TO_LE

0x00

convert between host byte order and little endian

BPF_TO_BE

0x08

convert between host byte order and big endian

The 'imm' field encodes the width of the swap operations. The following widths are supported: 16, 32 and 64. The following table summarizes the resulting possibilities:

Table 6
opcode construction opcode imm mnemonic pseudocode

BPF_END | BPF_TO_LE | BPF_ALU

0xd4

16

le16 dst

dst = htole16(dst)

BPF_END | BPF_TO_LE | BPF_ALU

0xd4

32

le32 dst

dst = htole32(dst)

BPF_END | BPF_TO_LE | BPF_ALU

0xd4

64

le64 dst

dst = htole64(dst)

BPF_END | BPF_TO_BE | BPF_ALU

0xdc

16

be16 dst

dst = htobe16(dst)

BPF_END | BPF_TO_BE | BPF_ALU

0xdc

32

be32 dst

dst = htobe32(dst)

BPF_END | BPF_TO_BE | BPF_ALU

0xdc

64

be64 dst

dst = htobe64(dst)

where

  • mnenomic indicates a short form that might be displayed by some tools such as disassemblers
  • 'htoleNN()' indicates converting a NN-bit value from host byte order to little-endian byte order
  • 'htobeNN()' indicates converting a NN-bit value from host byte order to big-endian byte order

4.2. Jump instructions

Instruction class BPF_JMP32 uses 32-bit wide operands while BPF_JMP uses 64-bit wide operands for otherwise identical operations.

The 4-bit 'code' field encodes the operation as below, where PC is the program counter:

Table 7
code value src description notes

BPF_JA

0x0

0x0

PC += offset

BPF_JMP only

BPF_JEQ

0x1

any

PC += offset if dst == src

BPF_JGT

0x2

any

PC += offset if dst > src

unsigned

BPF_JGE

0x3

any

PC += offset if dst >= src

unsigned

BPF_JSET

0x4

any

PC += offset if dst & src

BPF_JNE

0x5

any

PC += offset if dst != src

BPF_JSGT

0x6

any

PC += offset if dst > src

signed

BPF_JSGE

0x7

any

PC += offset if dst >= src

signed

BPF_CALL

0x8

0x0

call platform-agnostic helper function imm

see Platform-agnostic helper functions (Section 4.2.1)

BPF_CALL

0x8

0x1

call PC += offset

see BPF-local functions (Section 4.2.3)

BPF_CALL

0x8

0x2

call platform-specific helper function imm

see Platform-specific helper functions (Section 4.2.2)

BPF_EXIT

0x9

0x0

return

BPF_JMP only

BPF_JLT

0xa

any

PC += offset if dst < src

unsigned

BPF_JLE

0xb

any

PC += offset if dst <= src

unsigned

BPF_JSLT

0xc

any

PC += offset if dst < src

signed

BPF_JSLE

0xd

any

PC += offset if dst <= src

signed

Example:

BPF_JSGE | BPF_X | BPF_JMP32 (0x7e) means:

  if (s32)dst s>= (s32)src goto +offset

where 's>=' indicates a signed '>=' comparison.

4.2.1. Platform-agnostic helper functions

Platform-agnostic helper functions are a concept whereby BPF programs can call into a set of function calls exposed by the runtime. Each helper function is identified by an integer used in a BPF_CALL instruction. The available platform-agnostic helper functions may differ for each program type, but integer values are unique across all program types.

4.2.2. Platform-specific helper functions

Platform-specific helper functions are helper functions that are unique to a particular platform. They use a separate integer numbering space from platform-agnostic helper functions, but otherwise the same considerations apply. Platforms are not required to implement any platform-specific functions.

4.2.3. BPF-local functions

BPF-local functions are functions exposed by the same BPF program as the caller, and are referenced by offset from the call instruction, similar to BPF_JA. A BPF_EXIT within the BPF-local function will return to the caller.

5. Load and store instructions

For load and store instructions (BPF_LD, BPF_LDX, BPF_ST, and BPF_STX), the 8-bit 'opcode' field is divided as:

Table 8
3 bits (MSB) 2 bits 3 bits (LSB)

mode

size

instruction class

mode
one of:
Table 9
mode modifier value description reference

BPF_IMM

0x00

64-bit immediate instructions

64-bit immediate instructions (Section 5.3)

BPF_ABS

0x20

legacy BPF packet access (absolute)

Legacy BPF Packet access instructions (Section 5.4)

BPF_IND

0x40

legacy BPF packet access (indirect)

Legacy BPF Packet access instructions (Section 5.4)

BPF_MEM

0x60

regular load and store operations

Regular load and store operations (Section 5.1)

BPF_ATOMIC

0xc0

atomic operations

Atomic operations (Section 5.2)

size
one of:
Table 10
size modifier value description

BPF_W

0x00

word (4 bytes)

BPF_H

0x08

half word (2 bytes)

BPF_B

0x10

byte

BPF_DW

0x18

double word (8 bytes)

instruction class
the instruction class (see Instruction classes (Section 3.1))

5.1. Regular load and store operations

The BPF_MEM mode modifier is used to encode regular load and store instructions that transfer data between a register and memory.

BPF_MEM | <size> | BPF_STX means:

  *(size *) (dst + offset) = src

BPF_MEM | <size> | BPF_ST means:

  *(size *) (dst + offset) = imm32

BPF_MEM | <size> | BPF_LDX means:

  dst = *(size *) (src + offset)

where size is one of: BPF_B, BPF_H, BPF_W, or BPF_DW.

5.2. Atomic operations

Atomic operations are operations that operate on memory and can not be interrupted or corrupted by other access to the same memory region by other eBPF programs or means outside of this specification.

All atomic operations supported by eBPF are encoded as store operations that use the BPF_ATOMIC mode modifier as follows:

  • BPF_ATOMIC | BPF_W | BPF_STX (0xc3) for 32-bit operations
  • BPF_ATOMIC | BPF_DW | BPF_STX (0xdb) for 64-bit operations

Note that 8-bit (BPF_B) and 16-bit (BPF_H) wide atomic operations are not supported, nor is BPF_ATOMIC | <size> | BPF_ST.

The 'imm' field is used to encode the actual atomic operation. Simple atomic operation use a subset of the values defined to encode arithmetic operations in the 'imm' field to encode the atomic operation:

Table 11
imm value description

BPF_ADD

0x00

atomic add

BPF_OR

0x40

atomic or

BPF_AND

0x50

atomic and

BPF_XOR

0xa0

atomic xor

BPF_ATOMIC | BPF_W | BPF_STX (0xc3) with 'imm' = BPF_ADD means:

  *(u32 *)(dst + offset) += src

BPF_ATOMIC | BPF_DW | BPF_STX (0xdb) with 'imm' = BPF ADD means:

  *(u64 *)(dst + offset) += src

In addition to the simple atomic operations above, there also is a modifier and two complex atomic operations:

Table 12
imm value description

BPF_FETCH

0x01

modifier: return old value

BPF_XCHG

0xe0 | BPF_FETCH

atomic exchange

BPF_CMPXCHG

0xf0 | BPF_FETCH

atomic compare and exchange

The BPF_FETCH modifier is optional for simple atomic operations, and always set for the complex atomic operations. If the BPF_FETCH flag is set, then the operation also overwrites src with the value that was in memory before it was modified.

The BPF_XCHG operation atomically exchanges src with the value addressed by dst + offset.

The BPF_CMPXCHG operation atomically compares the value addressed by dst + offset with R0. If they match, the value addressed by dst + offset is replaced with src. In either case, the value that was at dst + offset before the operation is zero-extended and loaded back to R0.

5.3. 64-bit immediate instructions

Instructions with the BPF_IMM 'mode' modifier use the wide instruction encoding defined in Instruction encoding (Section 3), and use the 'src' field of the basic instruction to hold an opcode subtype.

The following instructions are defined, and use additional concepts defined below:

Table 13
opcode construction opcode src pseudocode imm type dst type

BPF_IMM | BPF_DW | BPF_LD

0x18

0x0

dst = imm64

integer

integer

BPF_IMM | BPF_DW | BPF_LD

0x18

0x1

dst = map_by_fd(imm)

map fd

map

BPF_IMM | BPF_DW | BPF_LD

0x18

0x2

dst = mva(map_by_fd(imm)) + next_imm

map fd

data pointer

BPF_IMM | BPF_DW | BPF_LD

0x18

0x3

dst = variable_addr(imm)

variable id

data pointer

BPF_IMM | BPF_DW | BPF_LD

0x18

0x4

dst = code_addr(imm)

integer

code pointer

BPF_IMM | BPF_DW | BPF_LD

0x18

0x5

dst = map_by_idx(imm)

map index

map

BPF_IMM | BPF_DW | BPF_LD

0x18

0x6

dst = mva(map_by_idx(imm)) + next_imm

map index

data pointer

where

  • map_by_fd(fd) means to convert a 32-bit POSIX file descriptor into an address of a map object (see Map objects (Section 5.3.1))
  • map_by_index(index) means to convert a 32-bit index into an address of a map object
  • mva(map) gets the address of the first value in a given map object
  • variable_addr(id) gets the address of a variable (see Variables (Section 5.3.2)) with a given id
  • code_addr(offset) gets the address of the instruction at a specified relative offset in units of 64-bit blocks
  • the 'imm type' can be used by disassemblers for display
  • the 'dst type' can be used for verification and JIT compilation purposes

5.3.1. Map objects

Maps are shared memory regions accessible by eBPF programs on some platforms, where we use the term "map object" to refer to an object containing the data and metadata (e.g., size) about the memory region. A map can have various semantics as defined in a separate document, and may or may not have a single contiguous memory region, but the 'mva(map)' is currently only defined for maps that do have a single contiguous memory region. Support for maps is optional.

Each map object can have a POSIX file descriptor (fd) if supported by the platform, where 'map_by_fd(fd)' means to get the map with the specified file descriptor. Each eBPF program can also be defined to use a set of maps associated with the program at load time, and 'map_by_index(index)' means to get the map with the given index in the set associated with the eBPF program containing the instruction.

5.3.2. Variables

Variables are memory regions, identified by integer ids, accessible by eBPF programs on some platforms. The 'variable_addr(id)' operation means to get the address of the memory region identified by the given id. Support for such variables is optional.

5.4. Legacy BPF Packet access instructions

eBPF previously introduced special instructions for access to packet data that were carried over from classic BPF. However, these instructions are deprecated and should no longer be used.

6. Acknowledgements

This draft was generated from instruction-set.rst in the Linux kernel repository, to which a number of other individuals have contributed over time, including Akhil Raj, Christoph Hellwig, Jose E. Marchesi, Kosuke Fujimoto, Shahab Vahedi, Tiezhu Yang, and Zheng Yejian, with review and suggestions by many others including Alan Jowett, Alexei Starovoitov, Andrii Nakryiko, Daniel Borkmann, David Vernet, Jim Harris, Quentin Monnet, Song Liu, Shung-Hsi Yu, Stanislav Fomichev, and Yonghong Song.

7. Appendix

For reference, the following table lists opcodes in order by value.

Table 14
opcode src imm description reference

0x00

0x0

any

(additional immediate value)

64-bit immediate instructions (Section 5.3)

0x04

0x0

any

dst = (u32)((u32)dst + (u32)imm)

Arithmetic instructions (Section 4.1)

0x05

0x0

0x00

goto +offset

Jump instructions (Section 4.2)

0x07

0x0

any

dst += imm

Arithmetic instructions (Section 4.1)

0x0c

any

0x00

dst = (u32)((u32)dst + (u32)src)

Arithmetic instructions (Section 4.1)

0x0f

any

0x00

dst += src

Arithmetic instructions (Section 4.1)

0x14

0x0

any

dst = (u32)((u32)dst - (u32)imm)

Arithmetic instructions (Section 4.1)

0x15

0x0

any

if dst == imm goto +offset

Jump instructions (Section 4.2)

0x16

0x0

any

if (u32)dst == imm goto +offset

Jump instructions (Section 4.2)

0x17

0x0

any

dst -= imm

Arithmetic instructions (Section 4.1)

0x18

0x0

any

dst = imm64

64-bit immediate instructions (Section 5.3)

0x18

0x1

any

dst = map_by_fd(imm)

64-bit immediate instructions (Section 5.3)

0x18

0x2

any

dst = mva(map_by_fd(imm)) + next_imm

64-bit immediate instructions (Section 5.3)

0x18

0x3

any

dst = variable_addr(imm)

64-bit immediate instructions (Section 5.3)

0x18

0x4

any

dst = code_addr(imm)

64-bit immediate instructions (Section 5.3)

0x18

0x5

any

dst = map_by_idx(imm)

64-bit immediate instructions (Section 5.3)

0x18

0x6

any

dst = mva(map_by_idx(imm)) + next_imm

64-bit immediate instructions (Section 5.3)

0x1c

any

0x00

dst = (u32)((u32)dst - (u32)src)

Arithmetic instructions (Section 4.1)

0x1d

any

0x00

if dst == src goto +offset

Jump instructions (Section 4.2)

0x1e

any

0x00

if (u32)dst == (u32)src goto +offset

Jump instructions (Section 4.2)

0x1f

any

0x00

dst -= src

Arithmetic instructions (Section 4.1)

0x20

any

any

(deprecated, implementation-specific)

Legacy BPF Packet access instructions (Section 5.4)

0x24

0x0

any

dst = (u32)(dst * imm)

Arithmetic instructions (Section 4.1)

0x25

0x0

any

if dst > imm goto +offset

Jump instructions (Section 4.2)

0x26

0x0

any

if (u32)dst > imm goto +offset

Jump instructions (Section 4.2)

0x27

0x0

any

dst *= imm

Arithmetic instructions (Section 4.1)

0x28

any

any

(deprecated, implementation-specific)

Legacy BPF Packet access instructions (Section 5.4)

0x2c

any

0x00

dst = (u32)(dst * src)

Arithmetic instructions (Section 4.1)

0x2d

any

0x00

if dst > src goto +offset

Jump instructions (Section 4.2)

0x2e

any

0x00

if (u32)dst > (u32)src goto +offset

Jump instructions (Section 4.2)

0x2f

any

0x00

dst *= src

Arithmetic instructions (Section 4.1)

0x30

any

any

(deprecated, implementation-specific)

Legacy BPF Packet access instructions (Section 5.4)

0x34

0x0

any

dst = (u32)((imm != 0) ? (dst / imm) : 0)

Arithmetic instructions (Section 4.1)

0x35

0x0

any

if dst >= imm goto +offset

Jump instructions (Section 4.2)

0x36

0x0

any

if (u32)dst >= imm goto +offset

Jump instructions (Section 4.2)

0x37

0x0

any

dst = (imm != 0) ? (dst / imm) : 0

Arithmetic instructions (Section 4.1)

0x38

any

any

(deprecated, implementation-specific)

Legacy BPF Packet access instructions (Section 5.4)

0x3c

any

0x00

dst = (u32)((imm != 0) ? (dst / src) : 0)

Arithmetic instructions (Section 4.1)

0x3d

any

0x00

if dst >= src goto +offset

Jump instructions (Section 4.2)

0x3e

any

0x00

if (u32)dst >= (u32)src goto +offset

Jump instructions (Section 4.2)

0x3f

any

0x00

dst = (src !+ 0) ? (dst / src) : 0

Arithmetic instructions (Section 4.1)

0x40

any

any

(deprecated, implementation-specific)

Legacy BPF Packet access instructions (Section 5.4)

0x44

0x0

any

dst = (u32)(dst | imm)

Arithmetic instructions (Section 4.1)

0x45

0x0

any

if dst & imm goto +offset

Jump instructions (Section 4.2)

0x46

0x0

any

if (u32)dst & imm goto +offset

Jump instructions (Section 4.2)

0x47

0x0

any

dst |= imm

Arithmetic instructions (Section 4.1)

0x48

any

any

(deprecated, implementation-specific)

Legacy BPF Packet access instructions (Section 5.4)

0x4c

any

0x00

dst = (u32)(dst | src)

Arithmetic instructions (Section 4.1)

0x4d

any

0x00

if dst & src goto +offset

Jump instructions (Section 4.2)

0x4e

any

0x00

if (u32)dst & (u32)src goto +offset

Jump instructions (Section 4.2)

0x4f

any

0x00

dst |= src

Arithmetic instructions (Section 4.1)

0x50

any

any

(deprecated, implementation-specific)

Legacy BPF Packet access instructions (Section 5.4)

0x54

0x0

any

dst = (u32)(dst & imm)

Arithmetic instructions (Section 4.1)

0x55

0x0

any

if dst != imm goto +offset

Jump instructions (Section 4.2)

0x56

0x0

any

if (u32)dst != imm goto +offset

Jump instructions (Section 4.2)

0x57

0x0

any

dst &= imm

Arithmetic instructions (Section 4.1)

0x58

any

any

(deprecated, implementation-specific)

Legacy BPF Packet access instructions (Section 5.4)

0x5c

any

0x00

dst = (u32)(dst & src)

Arithmetic instructions (Section 4.1)

0x5d

any

0x00

if dst != src goto +offset

Jump instructions (Section 4.2)

0x5e

any

0x00

if (u32)dst != (u32)src goto +offset

Jump instructions (Section 4.2)

0x5f

any

0x00

dst &= src

Arithmetic instructions (Section 4.1)

0x61

any

0x00

dst = *(u32 *)(src + offset)

Load and store instructions (Section 5)

0x62

0x0

any

*(u32 *)(dst + offset) = imm

Load and store instructions (Section 5)

0x63

any

0x00

*(u32 *)(dst + offset) = src

Load and store instructions (Section 5)

0x64

0x0

any

dst = (u32)(dst << imm)

Arithmetic instructions (Section 4.1)

0x65

0x0

any

if dst s> imm goto +offset

Jump instructions (Section 4.2)

0x66

0x0

any

if (s32)dst s> (s32)imm goto +offset

Jump instructions (Section 4.2)

0x67

0x0

any

dst <<= imm

Arithmetic instructions (Section 4.1)

0x69

any

0x00

dst = *(u16 *)(src + offset)

Load and store instructions (Section 5)

0x6a

0x0

any

*(u16 *)(dst + offset) = imm

Load and store instructions (Section 5)

0x6b

any

0x00

*(u16 *)(dst + offset) = src

Load and store instructions (Section 5)

0x6c

any

0x00

dst = (u32)(dst << src)

Arithmetic instructions (Section 4.1)

0x6d

any

0x00

if dst s> src goto +offset

Jump instructions (Section 4.2)

0x6e

any

0x00

if (s32)dst s> (s32)src goto +offset

Jump instructions (Section 4.2)

0x6f

any

0x00

dst <<= src

Arithmetic instructions (Section 4.1)

0x71

any

0x00

dst = *(u8 *)(src + offset)

Load and store instructions (Section 5)

0x72

0x0

any

*(u8 *)(dst + offset) = imm

Load and store instructions (Section 5)

0x73

any

0x00

*(u8 *)(dst + offset) = src

Load and store instructions (Section 5)

0x74

0x0

any

dst = (u32)(dst >> imm)

Arithmetic instructions (Section 4.1)

0x75

0x0

any

if dst s>= imm goto +offset

Jump instructions (Section 4.2)

0x76

0x0

any

if (s32)dst s>= (s32)imm goto +offset

Jump instructions (Section 4.2)

0x77

0x0

any

dst >>= imm

Arithmetic instructions (Section 4.1)

0x79

any

0x00

dst = *(u64 *)(src + offset)

Load and store instructions (Section 5)

0x7a

0x0

any

*(u64 *)(dst + offset) = imm

Load and store instructions (Section 5)

0x7b

any

0x00

*(u64 *)(dst + offset) = src

Load and store instructions (Section 5)

0x7c

any

0x00

dst = (u32)(dst >> src)

Arithmetic instructions (Section 4.1)

0x7d

any

0x00

if dst s>= src goto +offset

Jump instructions (Section 4.2)

0x7e

any

0x00

if (s32)dst s>= (s32)src goto +offset

Jump instructions (Section 4.2)

0x7f

any

0x00

dst >>= src

Arithmetic instructions (Section 4.1)

0x84

0x0

0x00

dst = (u32)-dst

Arithmetic instructions (Section 4.1)

0x85

0x0

any

call platform-agnostic helper function imm

Platform-agnostic helper functions (Section 4.2.1)

0x85

0x1

any

call PC += offset

BPF-local functions (Section 4.2.3)

0x85

0x2

any

call platform-specific helper function imm

Platform-specific helper functions (Section 4.2.2)

0x87

0x0

0x00

dst = -dst

Arithmetic instructions (Section 4.1)

0x94

0x0

any

dst = (u32)((imm != 0) ? (dst % imm) : dst)

Arithmetic instructions (Section 4.1)

0x95

0x0

0x00

return

Jump instructions (Section 4.2)

0x97

0x0

any

dst = (imm != 0) ? (dst % imm) : dst

Arithmetic instructions (Section 4.1)

0x9c

any

0x00

dst = (u32)((src != 0) ? (dst % src) : dst)

Arithmetic instructions (Section 4.1)

0x9f

any

0x00

dst = (src != 0) ? (dst % src) : dst

Arithmetic instructions (Section 4.1)

0xa4

0x0

any

dst = (u32)(dst ^ imm)

Arithmetic instructions (Section 4.1)

0xa5

0x0

any

if dst < imm goto +offset

Jump instructions (Section 4.2)

0xa6

0x0

any

if (u32)dst < imm goto +offset

Jump instructions (Section 4.2)

0xa7

0x0

any

dst ^= imm

Arithmetic instructions (Section 4.1)

0xac

any

0x00

dst = (u32)(dst ^ src)

Arithmetic instructions (Section 4.1)

0xad

any

0x00

if dst < src goto +offset

Jump instructions (Section 4.2)

0xae

any

0x00

if (u32)dst < (u32)src goto +offset

Jump instructions (Section 4.2)

0xaf

any

0x00

dst ^= src

Arithmetic instructions (Section 4.1)

0xb4

0x0

any

dst = (u32) imm

Arithmetic instructions (Section 4.1)

0xb5

0x0

any

if dst <= imm goto +offset

Jump instructions (Section 4.2)

0xa6

0x0

any

if (u32)dst <= imm goto +offset

Jump instructions (Section 4.2)

0xb7

0x0

any

dst = imm

Arithmetic instructions (Section 4.1)

0xbc

any

0x00

dst = (u32) src

Arithmetic instructions (Section 4.1)

0xbd

any

0x00

if dst <= src goto +offset

Jump instructions (Section 4.2)

0xbe

any

0x00

if (u32)dst <= (u32)src goto +offset

Jump instructions (Section 4.2)

0xbf

any

0x00

dst = src

Arithmetic instructions (Section 4.1)

0xc3

any

0x00

lock *(u32 *)(dst + offset) += src

Atomic operations (Section 5.2)

0xc3

any

0x01

lock:

    *(u32 *)(dst + offset) += src
    src = *(u32 *)(dst + offset)

Atomic operations (Section 5.2)

0xc3

any

0x40

*(u32 *)(dst + offset) |= src

Atomic operations (Section 5.2)

0xc3

any

0x41

lock:

    *(u32 *)(dst + offset) |= src
    src = *(u32 *)(dst + offset)

Atomic operations (Section 5.2)

0xc3

any

0x50

*(u32 *)(dst + offset) &= src

Atomic operations (Section 5.2)

0xc3

any

0x51

lock:

    *(u32 *)(dst + offset) &= src
    src = *(u32 *)(dst + offset)

Atomic operations (Section 5.2)

0xc3

any

0xa0

*(u32 *)(dst + offset) ^= src

Atomic operations (Section 5.2)

0xc3

any

0xa1

lock:

    *(u32 *)(dst + offset) ^= src
    src = *(u32 *)(dst + offset)

Atomic operations (Section 5.2)

0xc3

any

0xe1

lock:

    temp = *(u32 *)(dst + offset)
    *(u32 *)(dst + offset) = src
    src = temp

Atomic operations (Section 5.2)

0xc3

any

0xf1

lock:

    temp = *(u32 *)(dst + offset)
    if *(u32)(dst + offset) == R0
       *(u32)(dst + offset) = src
    R0 = temp

Atomic operations (Section 5.2)

0xc4

0x0

any

dst = (u32)(dst s>> imm)

Arithmetic instructions (Section 4.1)

0xc5

0x0

any

if dst s< imm goto +offset

Jump instructions (Section 4.2)

0xc6

0x0

any

if (s32)dst s< (s32)imm goto +offset

Jump instructions (Section 4.2)

0xc7

0x0

any

dst s>>= imm

Arithmetic instructions (Section 4.1)

0xcc

any

0x00

dst = (u32)(dst s>> src)

Arithmetic instructions (Section 4.1)

0xcd

any

0x00

if dst s< src goto +offset

Jump instructions (Section 4.2)

0xce

any

0x00

if (s32)dst s< (s32)src goto +offset

Jump instructions (Section 4.2)

0xcf

any

0x00

dst s>>= src

Arithmetic instructions (Section 4.1)

0xd4

0x0

0x10

dst = htole16(dst)

Byte swap instructions (Section 4.1.1)

0xd4

0x0

0x20

dst = htole32(dst)

Byte swap instructions (Section 4.1.1)

0xd4

0x0

0x40

dst = htole64(dst)

Byte swap instructions (Section 4.1.1)

0xd5

0x0

any

if dst s<= imm goto +offset

Jump instructions (Section 4.2)

0xd6

0x0

any

if (s32)dst s<= (s32)imm goto +offset

Jump instructions (Section 4.2)

0xdb

any

0x00

lock *(u64 *)(dst + offset) += src

Atomic operations (Section 5.2)

0xdb

any

0x01

lock:

    *(u64 *)(dst + offset) += src
    src = *(u64 *)(dst + offset)

Atomic operations (Section 5.2)

0xdb

any

0x40

*(u64 *)(dst + offset) |= src

Atomic operations (Section 5.2)

0xdb

any

0x41

lock:

    *(u64 *)(dst + offset) |= src
    lock src = *(u64 *)(dst + offset)

Atomic operations (Section 5.2)

0xdb

any

0x50

*(u64 *)(dst + offset) &= src

Atomic operations (Section 5.2)

0xdb

any

0x51

lock:

    *(u64 *)(dst + offset) &= src
    src = *(u64 *)(dst + offset)

Atomic operations (Section 5.2)

0xdb

any

0xa0

*(u64 *)(dst + offset) ^= src

Atomic operations (Section 5.2)

0xdb

any

0xa1

lock:

    *(u64 *)(dst + offset) ^= src
    src = *(u64 *)(dst + offset)

Atomic operations (Section 5.2)

0xdb

any

0xe1

lock:

    temp = *(u64 *)(dst + offset)
    *(u64 *)(dst + offset) = src
    src = temp

Atomic operations (Section 5.2)

0xdb

any

0xf1

lock:

    temp = *(u64 *)(dst + offset)
    if *(u64)(dst + offset) == R0
       *(u64)(dst + offset) = src
    R0 = temp

Atomic operations (Section 5.2)

0xdc

0x0

0x10

dst = htobe16(dst)

Byte swap instructions (Section 4.1.1)

0xdc

0x0

0x20

dst = htobe32(dst)

Byte swap instructions (Section 4.1.1)

0xdc

0x0

0x40

dst = htobe64(dst)

Byte swap instructions (Section 4.1.1)

0xdd

any

0x00

if dst s<= src goto +offset

Jump instructions (Section 4.2)

0xde

any

0x00

if (s32)dst s<= (s32)src goto +offset

Jump instructions (Section 4.2)

Author's Address

Dave Thaler (editor)
Microsoft
Redmond, WA 98052
United States of America