Internet-Draft | BGP-LS-SPF for Multi-segment SD-WAN | July 2023 |
Sheng & Shi | Expires 11 January 2024 | [Page] |
This document introduces the usage of BGP-LS-SPF protocol in multi-segment SD-WAN scenarios. It allows SD-WAN tunnels to be published as logical links, which can cross the internet, MPLS networks, and various operator network. The BGP-LS-SPF protocol can construct an overlay network topology for logical links and physical links across these heterogeneous networks, and calculate the reachability routes of overlay network nodes based on this topology.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 11 January 2024.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
As pointed out in [I-D.draft-ietf-rtgwg-net2cloud-problem-statement], enterprises are migrating their workloads to cloud service. The enterprise branch interconnection and enterprise site to cloud DC connection may cross heterogeneous network such as operator networks, enterprise-owned backbone networks or direct connection lines.¶
For large enterprises to access the cloud service and interconnect their branches, a PoP GWs network can be built to provide multi-cloud, multi-tenant, and multi-branch interconnection. Depending on the geographical distribution of the enterprise branches, the PoP GWs network may be a cross-regional or even a global network. The PoP GW can be connected to the operator network or the enterprise-owned backbone network. The PoP GWs devices can also be directly connected through dedicated lines.¶
According to [I-D.draft-ietf-bess-bgp-sdwan-usage], SD-WAN tunnels can be established between two GWs devices connected to the operator network, MPLS VPN network, or internet network through the WAN ports of the two PoP GWs devices. All GWs are under the control of one BGP instance. [I-D.draft-ietf-idr-sdwan-edge-discovery] defines the mechanism for SD-WAN edges to discover each other's properties via BGP update through RR. This allows the interconnection between enterprise branches and multi-cloud to pass through multiple SD-WAN tunnels or direct connection lines, as shown in Figure 1.¶
This draft provides a way to use the BGP-LS-SPF protocol to collect the identification of PoP GW device node and the topology of SD-WAN tunnel and direct connection lines. In this way, each PoP GW device can learn the PoP GWs network topology, and calculate the route to any other PoP GW.¶
This specification reuses terms defined in Section 5.2 of [I-D.draft-ietf-lsvr-bgp-spf] including BGP-LS-SPF Node NLRI, BGP-LS-SPF Link NLRI, Dijkstra Algorithm.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
As shown in Figure 1, GW1, GW2, GW5 are connected to the same internet/ISP network. The GW2 and GW3 are connected through direct dedicated links. GW5 and GW4 are connected by MPLS VPN. BGP-SD-WAN neighbors are established between GWs through RR. BGP-LS-SPF neighbors are established between each GW and RR. SD-WAN tunnel links are established between GWs through BGP-SD-WAN neighbors reflecting SD-WAN routes(see [I-D.draft-ietf-idr-sdwan-edge-discovery]), as shown in the SD-WAN Tunnel between GW1 and GW2 with WAN port IP addresses of 10.1.1.1 and 20.1.1.1, respectively. GW nodes reflect the SD-WAN tunnel topology information to all GWs, including dedicated line-connected GWs, through BGP-LS-SPF neighbors with RR.¶
GW2-GW3-GW4 are connected through dedicated lines. BGP-LS-SPF neighbors are established between GWs through dedicated lines, and also between GWs and RR. The BGP-LS-SPF neighbors between dedicated lines are used to discover the topology information of the dedicated lines, such as the direct link with port IP addresses of 30.1.1.1 and 40.1.1.1 between GW3 and GW4 shown in the figure. The dedicated line topology information is reflected to all GWs, including SD-WAN tunnel-connected GWs, through BGP-LS-SPF neighbors with RR.¶
The BGP-LS-SPF LINK NLRI is used to carry the two endpoint IP address of the SD-WAN tunnel or dedicated lines. The BGP-LS-SPF NODE NLRI is used to carry PoP GW device node identification. They are advertised to other GWs through the RR. In this way, all GW learns the topology of whole PoP GWs network and can calculate the next hop to any other GW using Dijkstra Algorithm.¶
This document does not introduce any new security considerations.¶
This document has no IANA actions.¶
The authors would like to thank Donglei Pang for his contribution to the document.¶