Internet-Draft The GNU Name System July 2020
Schanzenbach, et al. Expires 7 January 2021 [Page]
Workgroup:
Independent Stream
Internet-Draft:
draft-schanzen-gns-01
Published:
Intended Status:
Informational
Expires:
Authors:
M. Schanzenbach
GNUnet e.V.
C. Grothoff
Berner Fachhochschule
B. Fix
GNUnet e.V.

The GNU Name System

Abstract

This document contains the GNU Name System (GNS) technical specification.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 January 2021.

Table of Contents

1. Introduction

The Domain Name System (DNS) is a unique distributed database and a vital service for most Internet applications. While DNS is distributed, it relies on centralized, trusted registrars to provide globally unique names. As the awareness of the central role DNS plays on the Internet rises, various institutions are using their power (including legal means) to engage in attacks on the DNS, thus threatening the global availability and integrity of information on the Internet.

DNS was not designed with security as a goal. This makes it very vulnerable, especially to attackers that have the technical capabilities of an entire nation state at their disposal. This specification describes a censorship-resistant, privacy-preserving and decentralized name system: The GNU Name System (GNS). It is designed to provide a secure alternative to DNS, especially when censorship or manipulation is encountered. GNS can bind names to any kind of cryptographically secured token, enabling it to double in some respects as even as an alternative to some of today's Public Key Infrastructures, in particular X.509 for the Web.

This document contains the GNU Name System (GNS) technical specification of the GNU Name System [GNS], a fully decentralized and censorship-resistant name system. GNS provides a privacy-enhancing alternative to the Domain Name System (DNS). The design of GNS incorporates the capability to integrate and coexist with DNS. GNS is based on the principle of a petname system and builds on ideas from the Simple Distributed Security Infrastructure (SDSI), addressing a central issue with the decentralized mapping of secure identifiers to memorable names: namely the impossibility of providing a global, secure and memorable mapping without a trusted authority. GNS uses the transitivity in the SDSI design to replace the trusted root with secure delegation of authority thus making petnames useful to other users while operating under a very strong adversary model.

This document defines the normative wire format of resource records, resolution processes, cryptographic routines and security considerations for use by implementors.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Zones

A zone in GNS is defined by a public/private ECDSA key pair (d,zk), where d is the private key and zk the corresponding public key. GNS employs the curve parameters of the twisted edwards representation of Curve25519 [RFC7748] (a.k.a. edwards25519) with the ECDSA scheme ([RFC6979]). In the following, we use the following naming convention for our cryptographic primitives:

d
is a 256-bit ECDSA private key. In GNS, records are signed using a key derived from "d" as described in Section 4.
p
is the prime of edwards25519 as defined in [RFC7748], i.e. 2^255 - 19.
B
is the group generator (X(P),Y(P)) of edwards25519 as defined in [RFC7748].
L
is the prime-order subgroup of edwards25519 in [RFC7748].
zk
is the ECDSA public key corresponding to d. It is defined in [RFC6979] as the curve point d*B where B is the group generator of the elliptic curve. The public key is used to uniquely identify a GNS zone and is referred to as the "zone key".

3. Resource Records

A GNS implementor MUST provide a mechanism to create and manage resource records for local zones. A local zone is established by creating a zone key pair. Records may be added to each zone, hence a (local) persistency mechanism for resource records and zones must be provided. This local zone database is used by the GNS resolver implementation and to publish record information.

A GNS resource record holds the data of a specific record in a zone. The resource record format is defined as follows:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   EXPIRATION                  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|       DATA SIZE       |          TYPE         |
+-----+-----+-----+-----+-----+-----+-----+-----+
|           FLAGS       |        DATA           /
+-----+-----+-----+-----+                       /
/                                               /
/                                               /
Figure 1

where:

EXPIRATION
denotes the absolute 64-bit expiration date of the record. In microseconds since midnight (0 hour), January 1, 1970 in network byte order.
DATA SIZE
denotes the 32-bit size of the DATA field in bytes and in network byte order.
TYPE
is the 32-bit resource record type. This type can be one of the GNS resource records as defined in Section 3 or a DNS record type as defined in [RFC1035] or any of the complementary standardized DNS resource record types. This value must be stored in network byte order. Note that values below 2^16 are reserved for allocation via IANA ([RFC6895]).
FLAGS
is a 32-bit resource record flags field (see below).
DATA
the variable-length resource record data payload. The contents are defined by the respective type of the resource record.

Flags indicate metadata surrounding the resource record. A flag value of 0 indicates that all flags are unset. The following illustrates the flag distribution in the 32-bit flag value of a resource record:

... 5       4         3        2        1        0
------+--------+--------+--------+--------+--------+
/ ... | SHADOW | EXPREL | SUPPL  | PRIVATE|    /   |
------+--------+--------+--------+--------+--------+
Figure 2

where:

SHADOW
If this flag is set, this record should be ignored by resolvers unless all (other) records of the same record type have expired. Used to allow zone publishers to facilitate good performance when records change by allowing them to put future values of records into the DHT. This way, future values can propagate and may be cached before the transition becomes active.
EXPREL
The expiration time value of the record is a relative time (still in microseconds) and not an absolute time. This flag should never be encountered by a resolver for records obtained from the DHT, but might be present when a resolver looks up private records of a zone hosted locally.
SUPPL
This is a supplemental record. It is provided in addition to the other records. This flag indicates that this record is not explicitly managed alongside the other records under the respective name but may be useful for the application. This flag should only be encountered by a resolver for records obtained from the DHT.
PRIVATE
This is a private record of this peer and it should thus not be published in the DHT. Thus, this flag should never be encountered by a resolver for records obtained from the DHT. Private records should still be considered just like regular records when resolving labels in local zones.

3.1. Record Types

A registry of GNS Record Types is described in Section 10. The registration policy for this registry is "First Come First Served", as described in [RFC8126]. When requesting new entries, careful consideration of the following criteria is strongly advised: FIXME: ausdenken was wir da gerne haetten.

3.2. PKEY

In GNS, a delegation of a label to a zone is represented through a PKEY record. A PKEY resource record contains the public key of the zone to delegate to. A PKEY record MUST be the only record under a label. No other records are allowed. A PKEY DATA entry has the following format:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   PUBLIC KEY                  |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 3

where:

PUBLIC KEY
A 256-bit ECDSA zone key.

3.3. GNS2DNS

It is possible to delegate a label back into DNS through a GNS2DNS record. The resource record contains a DNS name for the resolver to continue with in DNS followed by a DNS server. Both names are in the format defined in [RFC1034] for DNS names. A GNS2DNS DATA entry has the following format:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                    DNS NAME                   |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                 DNS SERVER NAME               |
/                                               /
/                                               /
|                                               |
+-----------------------------------------------+
Figure 4

where:

DNS NAME
The name to continue with in DNS (0-terminated).
DNS SERVER NAME
The DNS server to use. May be an IPv4/IPv6 address in dotted decimal form or a DNS name. It may also be a relative GNS name ending with a "+" top-level domain. The value is UTF-8 encoded (also for DNS names) and 0-terminated.

3.4. LEHO

Legacy hostname records can be used by applications that are expected to supply a DNS name on the application layer. The most common use case is HTTP virtual hosting, which as-is would not work with GNS names as those may not be globally unique. A LEHO resource record is expected to be found together in a single resource record with an IPv4 or IPv6 address. A LEHO DATA entry has the following format:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                 LEGACY HOSTNAME               |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 5

where:

LEGACY HOSTNAME
A UTF-8 string (which is not 0-terminated) representing the legacy hostname.

NOTE: If an application uses a LEHO value in an HTTP request header (e.g. "Host:" header) it must be converted to a punycode representation [RFC5891].

3.5. NICK

Nickname records can be used by zone administrators to publish an indication on what label this zone prefers to be referred to. This is a suggestion to other zones what label to use when creating a PKEY (Section 3.2) record containing this zone's public zone key. This record SHOULD only be stored under the empty label "@" but MAY be returned with record sets under any label as a supplemental record. Section 6.2.6 details how a resolver must process supplemental and non-supplemental NICK records. A NICK DATA entry has the following format:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                  NICKNAME                     |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 6

where:

NICKNAME
A UTF-8 string (which is not 0-terminated) representing the preferred label of the zone. This string MUST NOT include a "." character.

3.6. BOX

In GNS, every "." in a name delegates to another zone, and GNS lookups are expected to return all of the required useful information in one record set. This is incompatible with the special labels used by DNS for SRV and TLSA records. Thus, GNS defines the BOX record format to box up SRV and TLSA records and include them in the record set of the label they are associated with. For example, a TLSA record for "_https._tcp.example.org" will be stored in the record set of "example.org" as a BOX record with service (SVC) 443 (https) and protocol (PROTO) 6 (tcp) and record TYPE "TLSA". For reference, see also [RFC2782]. A BOX DATA entry has the following format:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|   PROTO   |    SVC    |       TYPE            |
+-----------+-----------------------------------+
|                 RECORD DATA                   |
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 7

where:

PROTO
the 16-bit protocol number, e.g. 6 for tcp. In network byte order.
SVC
the 16-bit service value of the boxed record, i.e. the port number. In network byte order.
TYPE
is the 32-bit record type of the boxed record. In network byte order.
RECORD DATA
is a variable length field containing the "DATA" format of TYPE as defined for the respective TYPE in DNS.

3.7. VPN

A VPN DATA entry has the following format:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|          HOSTING PEER PUBLIC KEY              |
|                (256 bits)                     |
|                                               |
|                                               |
+-----------+-----------------------------------+
|   PROTO   |    SERVICE  NAME                  |
+-----------+                                   +
/                                               /
/                                               /
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 8

where:

HOSTING PEER PUBLIC KEY
is a 256-bit EdDSA public key identifying the peer hosting the service.
PROTO
the 16-bit protocol number, e.g. 6 for TCP. In network byte order.
SERVICE NAME
a shared secret used to identify the service at the hosting peer, used to derive the port number requird to connect to the service. The service name MUST be a 0-terminated UTF-8 string.

4. Publishing Records

GNS resource records are published in a distributed hash table (DHT). We assume that a DHT provides two functions: GET(key) and PUT(key,value). In GNS, resource records are grouped by their respective labels, encrypted and published together in a single resource records block (RRBLOCK) in the DHT under a key "q": PUT(q, RRBLOCK). The key "q" which is derived from the zone key "zk" and the respective label of the contained records.

4.1. Key Derivations

Given a label, the DHT key "q" is derived as follows:

PRK_h := HKDF-Extract ("key-derivation", zk)
h := HKDF-Expand (PRK_h, label | "gns", 512 / 8)
d_h := h * d mod L
zk_h := h mod L * zk
q := SHA512 (zk_h)

We use a hash-based key derivation function (HKDF) as defined in [RFC5869]. We use HMAC-SHA512 for the extraction phase and HMAC-SHA256 for the expansion phase.

PRK_h
is key material retrieved using an HKDF using the string "key-derivation" as salt and the public zone key "zk" as initial keying material.
h
is the 512-bit HKDF expansion result. The expansion info input is a concatenation of the label and string "gns".
d
is the 256-bit private zone key as defined in Section 2.
label
is a UTF-8 string under which the resource records are published.
d_h
is a 256-bit private key derived from the "d" using the keying material "h".
zk_h
is a 256-bit public key derived from the zone key "zk" using the keying material "h".
L
is the prime-order subgroup as defined in Section 2.
q
Is the 512-bit DHT key under which the resource records block is published. It is the SHA512 hash over the public key "zk_h" corresponding to the derived private key "d_h".

We point out that the multiplication of "zk" with "h" is a point multiplication, while the multiplication of "d" with "h" is a scalar multiplication.

4.2. Resource Records Block

GNS records are grouped by their labels and published as a single block in the DHT. The grouped record sets MAY be paired with any number of supplemental records. Supplemental records must have the supplemental flag set (See Section 3). The contained resource records are encrypted using a symmetric encryption scheme. A GNS implementation must publish RRBLOCKs in accordance to the properties and recommendations of the underlying DHT. This may include a periodic refresh publication. A GNS RRBLOCK has the following format:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   SIGNATURE                   |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                  PUBLIC KEY                   |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|         SIZE          |       PURPOSE         |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   EXPIRATION                  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                    BDATA                      /
/                                               /
/                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 9

where:

SIGNATURE
A 512-bit ECDSA deterministic signature compliant with [RFC6979]. The signature is computed over the data following the PUBLIC KEY field. The signature is created using the derived private key "d_h" (see Section 4).
PUBLIC KEY
is the 256-bit public key "zk_h" to be used to verify SIGNATURE. The wire format of this value is defined in [RFC8032], Section 5.1.5.
SIZE
A 32-bit value containing the length of the signed data following the PUBLIC KEY field in network byte order. This value always includes the length of the fields SIZE (4), PURPOSE (4) and EXPIRATION (8) in addition to the length of the BDATA. While a 32-bit value is used, implementations MAY refuse to publish blocks beyond a certain size significantly below 4 GB. However, a minimum block size of 62 kilobytes MUST be supported.
PURPOSE
A 32-bit signature purpose flag. This field MUST be 15 (in network byte order).
EXPIRATION
Specifies when the RRBLOCK expires and the encrypted block SHOULD be removed from the DHT and caches as it is likely stale. However, applications MAY continue to use non-expired individual records until they expire. The value MUST be set to the expiration time of the resource record contained within this block with the smallest expiration time. If a records block includes shadow records, then the maximum expiration time of all shadow records with matching type and the expiration times of the non-shadow records is considered. This is a 64-bit absolute date in microseconds since midnight (0 hour), January 1, 1970 in network byte order.
BDATA
The encrypted resource records with a total size of SIZE - 16.

4.3. Record Data Encryption and Decryption

A symmetric encryption scheme is used to encrypt the resource records set RDATA into the BDATA field of a GNS RRBLOCK. The wire format of the RDATA looks as follows:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|     RR COUNT          |        EXPIRA-        /
+-----+-----+-----+-----+-----+-----+-----+-----+
/         -TION         |       DATA SIZE       |
+-----+-----+-----+-----+-----+-----+-----+-----+
|         TYPE          |          FLAGS        |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                      DATA                     /
/                                               /
/                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   EXPIRATION                  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|       DATA SIZE       |          TYPE         |
+-----+-----+-----+-----+-----+-----+-----+-----+
|           FLAGS       |        DATA           /
+-----+-----+-----+-----+                       /
/                       +-----------------------/
/                       |                       /
+-----------------------+                       /
/                     PADDING                   /
/                                               /
Figure 10

where:

RR COUNT
A 32-bit value containing the number of variable-length resource records which are following after this field in network byte order.
EXPIRATION, DATA SIZE, TYPE, FLAGS and DATA
These fields were defined in the resource record format in Section 3. There MUST be a total of RR COUNT of these resource records present.
PADDING
The padding MUST contain the value 0 in all octets. The padding MUST ensure that the size of the RDATA WITHOUT the RR COUNT field is a power of two. As a special exception, record sets with (only) a PKEY record type are never padded. Note that a record set with a PKEY record MUST NOT contain other records.

The symmetric keys and initialization vectors are derived from the record label and the zone key "zk". For decryption of the resource records block payload, the key material "K" and initialization vector "IV" for the symmetric cipher are derived as follows:

PRK_k := HKDF-Extract ("gns-aes-ctx-key", zk)
PRK_iv := HKDF-Extract ("gns-aes-ctx-iv", zk)
K := HKDF-Expand (PRK_k, label, 512 / 8);
IV := HKDF-Expand (PRK_iv, label, 256 / 8)

HKDF is a hash-based key derivation function as defined in [RFC5869]. Specifically, HMAC-SHA512 is used for the extraction phase and HMAC-SHA256 for the expansion phase. The output keying material is 64 octets (512 bit) for the symmetric keys and 32 octets (256 bit) for the initialization vectors. We divide the resulting keying material "K" into a 256-bit AES [RFC3826] key and a 256-bit TWOFISH [TWOFISH] key:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                    AES KEY                    |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                  TWOFISH KEY                  |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 11

Similarly, we divide "IV" into a 128-bit initialization vector and a 128-bit initialization vector:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                    AES IV                     |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                  TWOFISH IV                   |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 12

The keys and IVs are used for a CFB128-AES-256 and CFB128-TWOFISH-256 chained symmetric cipher. Both ciphers are used in Cipher FeedBack (CFB) mode [RFC3826].

RDATA := AES(K[0:31], IV[0:15],
             TWOFISH(K[32:63], IV[16:31], BDATA))
BDATA := TWOFISH(K[32:63], IV[16:31],
                 AES(K[0:31], IV[0:15], RDATA))

5. Internationalization and Character Encoding

All labels in GNS are encoded in UTF-8 [RFC3629]. This does not include any DNS names found in DNS records, such as CNAME records, which are internationalized through the IDNA specifications [RFC5890].

6. Name Resolution

Names in GNS are resolved by recursively querying the DHT record storage. In the following, we define how resolution is initiated and each iteration in the resolution is processed.

GNS resolution of a name must start in a given starting zone indicated using a zone public key. Details on how the starting zone may be determined is discussed in Section 8.

When GNS name resolution is requested, a desired record type MAY be provided by the client. The GNS resolver will use the desired record type to guide processing, for example by providing conversion of VPN records to A or AAAA records, if that is desired. However, filtering of record sets according to the required record types MUST still be done by the client after the resource record set is retrieved.

6.1. Recursion

In each step of the recursive name resolution, there is an authoritative zone zk and a name to resolve. The name may be empty. Initially, the authoritative zone is the start zone. If the name is empty, it is interpreted as the apex label "@".

From here, the following steps are recursively executed, in order:

  1. Extract the right-most label from the name to look up.
  2. Calculate q using the label and zk as defined in Section 4.1.
  3. Perform a DHT query GET(q) to retrieve the RRBLOCK.
  4. Verify and process the RRBLOCK and decrypt the BDATA contained in it as defined in Section 4.3.

Upon receiving the RRBLOCK from the DHT, apart from verifying the provided signature, the resolver MUST check that the authoritative zone key was used to sign the record: The derived zone key "h*zk" MUST match the public key provided in the RRBLOCK, otherwise the RRBLOCK MUST be ignored and the DHT lookup GET(q) MUST continue.

6.2. Record Processing

Record processing occurs at the end of a single recursion. We assume that the RRBLOCK has been cryptographically verified and decrypted. At this point, we must first determine if we have received a valid record set in the context of the name we are trying to resolve:

  1. Case 1: If the remainder of the name to resolve is empty and the record set does not consist of a PKEY, CNAME or DNS2GNS record, the record set is the result and the recursion is concluded.
  2. Case 2: If the name to be resolved is of the format "_SERVICE._PROTO" and the record set contains one or more matching BOX records, the records in the BOX records are the result and the recusion is concluded (Section 6.2.4).
  3. Case 3: If the remainder of the name to resolve is not empty and does not match the "_SERVICE._PROTO" syntax, then the current record set MUST consist of a single PKEY record (Section 6.2.1), a single CNAME record (Section 6.2.3), or one or more GNS2DNS records (Section 6.2.2), which are processed as described in the respective sections below. The record set may include any number of supplemental records. Otherwise, resolution fails and the resolver MUST return an empty record set. Finally, after the recursion terminates, the client preferences for the record type SHOULD be considered. If a VPN record is found and the client requests an A or AAAA record, the VPN record SHOULD be converted (Section 6.2.5) if possible.

6.2.1. PKEY

When the resolver encounters a PKEY record and the remainder of the name is not empty, resolution continues recursively with the remainder of the name in the GNS zone specified in the PKEY record.

If the remainder of the name to resolve is empty and we have received a record set containing only a single PKEY record, the recursion is continued with the PKEY as authoritative zone and the empty apex label "@" as remaining name, except in the case where the desired record type is PKEY, in which case the PKEY record is returned and the resolution is concluded without resolving the empty apex label.

6.2.2. GNS2DNS

When a resolver encounters one or more GNS2DNS records and the remaining name is empty and the desired record type is GNS2DNS, the GNS2DNS records are returned.

Otherwise, it is expected that the resolver first resolves the IP(s) of the specified DNS name server(s). GNS2DNS records MAY contain numeric IPv4 or IPv6 addresses, allowing the resolver to skip this step. The DNS server names may themselves be names in GNS or DNS. If the DNS server name ends in ".+", the rest of the name is to be interpreted relative to the zone of the GNS2DNS record. If the DNS server name ends in ".<Base32(zk)>", the DNS server name is to be resolved against the GNS zone zk.

Multiple GNS2DNS records may be stored under the same label, in which case the resolver MUST try all of them. The resolver MAY try them in any order or even in parallel. If multiple GNS2DNS records are present, the DNS name MUST be identical for all of them, if not the resolution fails and an emtpy record set is returned as the record set is invalid.

Once the IP addresses of the DNS servers have been determined, the DNS name from the GNS2DNS record is appended to the remainder of the name to be resolved, and resolved by querying the DNS name server(s). As the DNS servers specified are possibly authoritative DNS servers, the GNS resolver MUST support recursive resolution and MUST NOT delegate this to the authoritative DNS servers. The first successful recursive name resolution result is returned to the client. In addition, the resolver returns the queried DNS name as a supplemental LEHO record (Section 3.4) with a relative expiration time of one hour.

GNS resolvers SHOULD offer a configuration option to disable DNS processing to avoid information leakage and provide a consistent security profile for all name resolutions. Such resolvers would return an empty record set upon encountering a GNS2DNS record during the recursion. However, if GNS2DNS records are encountered in the record set for the apex and a GNS2DNS record is expicitly requested by the application, such records MUST still be returned, even if DNS support is disabled by the GNS resolver configuration.

6.2.3. CNAME

If a CNAME record is encountered, the canonical name is appended to the remaining name, except if the remaining name is empty and the desired record type is CNAME, in which case the resolution concludes with the CNAME record. If the canonical name ends in ".+", resolution continues in GNS with the new name in the current zone. Otherwise, the resulting name is resolved via the default operating system name resolution process. This may in turn again trigger a GNS resolution process depending on the system configuration.

The recursive DNS resolution process may yield a CNAME as well which in turn may either point into the DNS or GNS namespace (if it ends in a ".<Base32(zk)>"). In order to prevent infinite loops, the resolver MUST implement loop detections or limit the number of recursive resolution steps. If the last CNAME was a DNS name, the resolver returns the DNS name as a supplemental LEHO record (Section 3.4) with a relative expiration time of one hour.

6.2.4. BOX

When a BOX record is received, a GNS resolver must unbox it if the name to be resolved continues with "_SERVICE._PROTO". Otherwise, the BOX record is to be left untouched. This way, TLSA (and SRV) records do not require a separate network request, and TLSA records become inseparable from the corresponding address records.

6.2.5. VPN

At the end of the recursion, if the queried record type is either A or AAAA and the retrieved record set contains at least one VPN record, the resolver SHOULD open a tunnel and return the IPv4 or IPv6 tunnel address, respectively. The type of tunnel depends on the contents of the VPN record data. The VPN record MUST be returned if the resolver implementation does not support setting up a tunnnel.

6.2.6. NICK

NICK records are only relevant to the recursive resolver if the record set in question is the final result which is to be returned to the client. The encountered NICK records may either be supplemental (see Section 3) or non-supplemental. If the NICK record is supplemental, the resolver only returns the record set if one of the non-supplemental records matches the queried record type.

The differentiation between a supplemental and non-supplemental NICK record allows the client to match the record to the authoritative zone. Consider the following example:

Query: alice.example (type=A)
Result:
A: 192.0.2.1
NICK: eve
Figure 13

In this example, the returned NICK record is non-supplemental. For the client, this means that the NICK belongs to the zone "alice.doe" and is published under the empty label along with an A record. The NICK record should be interpreted as: The zone defined by "alice.doe" wants to be referred to as "eve". In contrast, consider the following:

Query: alice.example (type=AAAA)
Result:
AAAA: 2001:DB8::1
NICK: john (Supplemental)
Figure 14

In this case, the NICK record is marked as supplemental. This means that the NICK record belongs to the zone "doe" and is published under the label "alice" along with an A record. The NICK record should be interpreted as: The zone defined by "doe" wants to be referred to as "john". This distinction is likely useful for other records published as supplemental.

7. Zone Revocation

Whenever a recursive resolver encounters a new GNS zone, it MUST check against the local revocation list whether the respective zone key has been revoked. If the zone key was revoked, the resolution MUST fail with an empty result set.

In order to revoke a zone key, a signed revocation object SHOULD be published. This object MUST be signed using the private zone key. The revocation object is flooded in the overlay network. To prevent flooding attacks, the revocation message MUST contain a proof of work (PoW). The revocation message including the PoW MAY be calculated ahead of time to support timely revocation.

For all occurences below, "Argon2id" is the Password-based Key Derivation Function as defined in [Argon2]. For the PoW calculations the algorithm is instantiated with the following parameters:

S
The salt. Fixed 16-octet string: "GnsRevocationPow".
t
Number of iterations: 3
m
Memory size in KiB: 1024
T
Output length of hash in bytes: 64
p
Parallelization parameter: 1
v
Algorithm version: 0x13
y
Algorithm type (Argon2id): 2
X
Unused
K
Unused

The following is the message string "P" on which the PoW is calculated:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                      POW                      |
+-----------------------------------------------+
|                   TIMESTAMP                   |
+-----------------------------------------------+
|                  PUBLIC KEY                   |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 15

where:

POW
A 64-bit solution to the PoW. In network byte order.
TIMESTAMP
denotes the absolute 64-bit date when the revocation was computed. In microseconds since midnight (0 hour), January 1, 1970 in network byte order.
PUBLIC KEY
is the 256-bit public key "zk" of the zone which is being revoked and the key to be used to verify SIGNATURE. The wire format of this value is defined in [RFC8032], Section 5.1.5.

Traditionally, PoW schemes require to find a "POW" such that at least D leading zeroes are found in the hash result. D is then referred to as the "difficulty" of the PoW. In order to reduce the variance in time it takes to calculate the PoW, we require that a number "Z" different PoWs must be found that on average have "D" leading zeroes.

The resulting proofs may then published and disseminated. The concrete dissemination and publication methods are out of scope of this document. Given an average difficulty of "D", the proofs have an expiration time of EPOCH. With each additional bit difficulty, the lifetime of the proof is prolonged for another EPOCH. Consequently, by calculating a more difficult PoW, the lifetime of the proof can be increased on demand by the zone owner.

The parameters are defined as follows:

Z
The number of PoWs required is fixed at 32.
D
The difficulty is fixed at 25.
EPOCH
A single epoch is fixed at 365 days.

Given that proof has been found, a revocation data object is defined as follows:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   TIMESTAMP                   |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                      TTL                      |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                     POW_0                     |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                       ...                     |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                     POW_Z-1                   |
+-----------------------------------------------+
|                   SIGNATURE                   |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                  PUBLIC KEY                   |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 16

where:

TIMESTAMP
denotes the absolute 64-bit date when the revocation was computed. In microseconds since midnight (0 hour), January 1, 1970 in network byte order. This is the same value as the timestamp used in the individual PoW calculations.
TTL
denotes the relative 64-bit time to live of of the record in microseconds also in network byte order. This field is informational for a verifier. The verifier may discard revocation if the TTL indicates that it is already expired. However, the actual TTL of the revocation must be determined by examining the leading zeros in the proof of work calculation.
POW_i
The values calculated as part of the PoW, in network byte order. Each POW_i MUST be unique in the set of POW values. To facilitate fast verification of uniqueness, the POW values must be given in strictly monotonically increasing order in the message.
SIGNATURE
A 512-bit ECDSA deterministic signature compliant with [RFC6979] over the public zone zk of the zone which is revoked and corresponds to the key used in the PoW. The signature is created using the private zone key "d" (see Section 2).
PUBLIC KEY
is the 256-bit public key "zk" of the zone which is being revoked and the key to be used to verify SIGNATURE. The wire format of this value is defined in [RFC8032], Section 5.1.5.

The signature over the public key covers a 32 bit pseudo header conceptually prefixed to the public key. The pseudo header includes the key length and signature purpose:

0     8     16    24    32    40    48    56
+-----+-----+-----+-----+-----+-----+-----+-----+
|         SIZE (0x30)   |       PURPOSE (0x03)  |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                  PUBLIC KEY                   |
|                                               |
|                                               |
|                                               |
+-----+-----+-----+-----+-----+-----+-----+-----+
|                   TIMESTAMP                   |
+-----+-----+-----+-----+-----+-----+-----+-----+
Figure 17

where:

SIZE
A 32-bit value containing the length of the signed data in bytes (48 bytes) in network byte order.
PURPOSE
A 32-bit signature purpose flag. This field MUST be 3 (in network byte order).
PUBLIC KEY / TIMESTAMP
Both values as defined in the revocation data object above.

In order to verify a revocation the following steps must be taken, in order:

  1. The current time MUST be between TIMESTAMP and TIMESTAMP+TTL.
  2. The signature MUST match the public key.
  3. The set of POW values MUST NOT contain duplicates.
  4. The average number of leading zeroes resulting from the provided POW values D' MUST be greater than D.
  5. The validation period (TTL) of the revocation is calculated as (D'-D) * EPOCH * 1.1. The EPOCH is extended by 10% in order to deal with unsynchronized clocks. The TTL added on top of the TIMESTAMP yields the expiration date.

8. Determining the Root Zone and Zone Governance

The resolution of a GNS name must start in a given start zone indicated to the resolver using any public zone key. The local resolver may have a local start zone configured/hard-coded which points to a local or remote start zone key. A resolver client may also determine the start zone from the suffix of the name given for resolution or using information retrieved out of band. The governance model of any zone is at the sole discretion of the zone owner. However, the choice of start zone(s) is at the sole discretion of the local system administrator or user.

This is an important distinguishing factor from the Domain Name System where root zone governance is centralized at the Internet Corporation for Assigned Names and Numbers (ICANN). In DNS terminology, GNS roughly follows the idea of a hyper-hyper local root zone deployment, with the difference that it is not expected that all deployments use the same local root zone.

In the following, we give examples how a local client resolver SHOULD discover the start zone. The process given is not exhaustive and clients MAY suppliement it with other mechanisms or ignore it if the particular application requires a different process.

GNS clients SHOULD first try to interpret the top-level domain of a GNS name as a zone key. For example. if the top-level domain is a Base32-encoded public zone key "zk", the root zone of the resolution process is implicitly given by the name:

Example name: www.example.<Base32(zk)>
=> Root zone: zk
=> Name to resolve from root zone: www.example

In GNS, users MAY own and manage their own zones. Each local zone SHOULD be associated with a single GNS label, but users MAY choose to use longer names consisting of multiple labels. If the name of a locally managed zone matches the suffix of the name to be resolved, resolution SHOULD start from the respective local zone:

Example name: www.example.org
Local zones:
fr = (d0,zk0)
gnu = (d1,zk1)
com = (d2,zk2)
...
=> Entry zone: zk1
=> Name to resolve from entry zone: www.example

Finally, additional "suffix to zone" mappings MAY be configured. Suffix to zone key mappings SHOULD be configurable through a local configuration file or database by the user or system administrator. The suffix MAY consist of multiple GNS labels concatenated with a ".". If multiple suffixes match the name to resolve, the longest matching suffix MUST BE used. The suffix length of two results cannot be equal, as this would indicate a misconfiguration. If both a locally managed zone and a configuration entry exist for the same suffix, the locally managed zone MUST have priority.

Example name: www.example.org
Local suffix mappings:
gnu = zk0
example.org = zk1
example.com = zk2
...
=> Entry zone: zk1
=> Name to resolve from entry zone: www

9. Security Considerations

9.1. Cryptography

The security of cryptographic systems depends on both the strength of the cryptographic algorithms chosen and the strength of the keys used with those algorithms. The security also depends on the engineering of the protocol used by the system to ensure that there are no non-cryptographic ways to bypass the security of the overall system.

This document concerns itself with the selection of cryptographic algorithms for use in GNS. The algorithms identified in this document are not known to be broken (in the cryptographic sense) at the current time, and cryptographic research so far leads us to believe that they are likely to remain secure into the foreseeable future. However, this isn't necessarily forever, and it is expected that new revisions of this document will be issued from time to time to reflect the current best practices in this area.

GNS uses ECDSA over Curve25519. This is an unconventional choice, as ECDSA is usually used with other curves. However, traditional ECDSA curves are problematic for a range of reasons described in the Curve25519 and EdDSA papers. Using EdDSA directly is also not possible, as a hash function is used on the private key which destroys the linearity that the GNU Name System depends upon. We are not aware of anyone suggesting that using Curve25519 instead of another common curve of similar size would lower the security of ECDSA. GNS uses 256-bit curves because that way the encoded (public) keys fit into a single DNS label, which is good for usability.

In terms of crypto-agility, whenever the need for an updated cryptographic scheme arises to replace ECDSA over Curve25519 it may simply be introduced through a new record type. Such a new record type may then replace the PKEY record type for future records. The old record type remains and zones can iteratively migrate to the updated zone keys.

9.2. Abuse mitigation

GNS names are UTF-8 strings. Consequently, GNS faces similar issues with respect to name spoofing as DNS does for internationalized domain names. In DNS, attackers may register similar sounding or looking names (see above) in order to execute phishing attacks. GNS zone administrators must take into account this attack vector and incorporate rules in order to mitigate it.

Further, DNS can be used to combat illegal content on the internet by having the respective domains seized by authorities. However, the same mechanisms can also be abused in order to impose state censorship, which ist one of the motivations behind GNS. Hence, such a seizure is, by design, difficult to impossible in GNS. In particular, GNS does not support WHOIS ([RFC3912]).

9.3. Zone management

In GNS, zone administrators need to manage and protect their zone keys. Once a zone key is lost it cannot be recovered. Once it is compromised it cannot be revoked (unless a revocation message was pre-calculated and is still available). Zone administrators, and for GNS this includes end-users, are required to responsibly and dilligently protect their cryptographic keys. Offline signing is in principle possible, but GNS does not support separate zone signing and key-signing keys (as in [RFC6781]) in order to provide usable security.

Similarly, users are required to manage their local root zone. In order to ensure integrity and availability or names, users must ensure that their local root zone information is not compromised or outdated. It can be expected that the processing of zone revocations and an initial root zone is provided with a GNS client implementation ("drop shipping"). Extension and customization of the zone is at the full discretion of the user.

9.4. Impact of underlying DHT

This document does not specifiy the properties of the underlying distributed hash table (DHT) which is required by any GNS implementation. For implementors, it is important to note that the properties of the DHT are directly inherited by the GNS implementation. This includes both security as well as other non-functional properties such as scalability and performance. Implementors should take great care when selecting or implementing a DHT for use in a GNS implementation. DHTs with string security and performance guarantees exist [R5N]. It should also be taken into consideration that GNS implementations which build upon different DHT overlays are unlikely to be interoperable with each other.

9.5. Revocations

Zone administrators are advised to pre-generate zone revocations and securely store the revocation information in case the zone key is lost, compromised or replaced in the furture. Pre-calculated revocations may become invalid due to expirations or protocol changes such as epoch adjustments. Consequently, implementors and users must make precautions in order to manage revocations accordingly.

Revocation payloads do NOT include a 'new' key for key replacement. Inclusion of such a key would have two major disadvantages:

If revocation is used after a private key was compromised, allowing key replacement would be dangerous: if an adversary took over the private key, the adversary could then broadcast a revocation with a key replacement. For the replacement, the compromised owner would have no chance to issue even a revocation. Thus, allowing a revocation message to replace a private key makes dealing with key compromise situations worse.

Sometimes, key revocations are used with the objective of changing cryptosystems. Migration to another cryptosystem by replacing keys via a revocation message would only be secure as long as both cryptosystems are still secure against forgery. Such a planned, non-emergency migration to another cryptosystem should be done by running zones for both ciphersystems in parallel for a while. The migration would conclude by revoking the legacy zone key only once it is deemed no longer secure, and hopefully after most users have migrated to the replacement.

10. GANA Considerations

GANA is requested to create an "GNU Name System Record Types" registry. The registry shall record for each entry:

The registration policy for this sub-registry is "First Come First Served", as described in [RFC8126]. GANA is requested to populate this registry as follows:

Number | Name    | Contact | References | Description
-------+---------+---------+------------+-------------------------
65536  | PKEY    | N/A     | [This.I-D] | GNS zone delegation
65537  | NICK    | N/A     | [This.I-D] | GNS zone nickname
65538  | LEHO    | N/A     | [This.I-D] | GNS legacy hostname
65539  | VPN     | N/A     | [This.I-D] | VPN resolution
65540  | GNS2DNS | N/A     | [This.I-D] | Delegation to DNS
65541  | BOX     | N/A     | [This.I-D] | Boxed record
Figure 18

GANA is requested to amend the "GNUnet Signature Purpose" registry as follows:

Purpose | Name            | References | Description
--------+-----------------+------------+--------------------------
  3     | GNS_REVOCATION  | [This.I-D] | GNS zone key revocation
 15     | GNS_RECORD_SIGN | [This.I-D] | GNS record set signature
Figure 19

11. Test Vectors

The following represents a test vector for a record set with a DNS record of type "A" as well as a GNS record of type "PKEY" under the label "test".


Zone private key (d, little-endian scalar):
3015471ecb45455b5e9df50ff416b3d53aa6db6cafec858449f788142d091d41

Zone public key (zk):
bf06e687a291a509b6326bb6394dd6ed3ff9e5eb78ea5752ed0eba0807023a33

Label: test
RRCOUNT: 2

Record #0
EXPIRATION: 1590482415557079
DATA_SIZE: 4
TYPE: 1
FLAGS: 0
DATA:
01020304

Record #1
EXPIRATION: 1590482415557079
DATA_SIZE: 32
TYPE: 65536
FLAGS: 2
DATA:
814fbb06b17f4ecf
d098700619179f9d
4aef24465bd6958a
e4ed01cd024b1856

RDATA:
0005a6890b6699d7
0000000400000001
0000000001020304
0005a6890b6699d7
0000002000010000
00000002814fbb06
b17f4ecfd0987006
19179f9d4aef2446
5bd6958ae4ed01cd
024b185600000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000

BDATA:
9f471611a5c06fc2
c9ad33f642dd315c
f8fc675aed23e8a1
d19a5bad657557fe
6e1d50709860593e
5376c30f6f22daac
5293986b7444476d
b8f289f5537da168
dc81cba256d8401b
642dbe6a24346e11
9148ade8acb4d5e5
cef5eb5ad1e3b95d
d143123d387b8df0
ba4e2d75a9eb94a4
f3250b975fee90e9
558bb9e1e009ca46
b7a066dd

RRBLOCK:
08180a871b910ade
a1125a1030d0f269
069e5731c90ad0d0
cfa10bf61b3f0c79
0833b515d4c746e6
4a7261947bfb6429
21200bb97a96292d
6abefab1197f7e4e
b399c628a71d3627
d64a2bd66080f64d
91c0120ab14601d8
18de23c8da82b80b
000000940000000f
0005a6890b6699d7
9f471611a5c06fc2
c9ad33f642dd315c
f8fc675aed23e8a1
d19a5bad657557fe
6e1d50709860593e
5376c30f6f22daac
5293986b7444476d
b8f289f5537da168
dc81cba256d8401b
642dbe6a24346e11
9148ade8acb4d5e5
cef5eb5ad1e3b95d
d143123d387b8df0
ba4e2d75a9eb94a4
f3250b975fee90e9
558bb9e1e009ca46
b7a066dd

The following is an example revocation for a zone:


Zone private key (d, little-endian scalar):
90ea2a95cb9ef482b45817dc45b805cae00f387022a065a3674f41ad15173c63

Zone public key (zk):
4ac1e51d9a585a9ad9fb0dfac2be100aee83f0cc79c4c5ea8f3eb8afd9092fa5

Difficulty (5 base difficulty + 2 epochs): 7

Proof:
0005a5fd368978f4
0000395d1827c000
e23f657bc47ec853
e23f657bc47ec9d8
e23f657bc47ecaec
e23f657bc47ecb29
e23f657bc47ecc00
e23f657bc47ecc79
e23f657bc47ece83
e23f657bc47ecfc6
e23f657bc47ecfc8
e23f657bc47ecfd5
e23f657bc47ed02b
e23f657bc47ed03b
e23f657bc47ed0ff
e23f657bc47ed241
e23f657bc47ed264
e23f657bc47ed2e5
e23f657bc47ed343
e23f657bc47ed348
e23f657bc47ed45e
e23f657bc47ed480
e23f657bc47ed49a
e23f657bc47ed564
e23f657bc47ed565
e23f657bc47ed5b6
e23f657bc47ed5de
e23f657bc47ed5e0
e23f657bc47ed77f
e23f657bc47ed800
e23f657bc47ed80c
e23f657bc47ed817
e23f657bc47ed82c
e23f657bc47ed8a6
0396020c831a5405
cee6c38842209191
c8db799dbe81e0dc
f6dbd4f91c257ae2
0079e7fd1cd31cc2
4cd9a52831d5ec30
f10e22e5a6dd9065
18746cfce2095610
4ac1e51d9a585a9a
d9fb0dfac2be100a
ee83f0cc79c4c5ea
8f3eb8afd9092fa5

12. Normative References

[RFC1034]
Mockapetris, P., "Domain names - concepts and facilities", STD 13, RFC 1034, DOI 10.17487/RFC1034, , <https://www.rfc-editor.org/info/rfc1034>.
[RFC1035]
Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, , <https://www.rfc-editor.org/info/rfc1035>.
[RFC2782]
Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for specifying the location of services (DNS SRV)", RFC 2782, DOI 10.17487/RFC2782, , <https://www.rfc-editor.org/info/rfc2782>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC3629]
Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, , <https://www.rfc-editor.org/info/rfc3629>.
[RFC3826]
Blumenthal, U., Maino, F., and K. McCloghrie, "The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model", RFC 3826, DOI 10.17487/RFC3826, , <https://www.rfc-editor.org/info/rfc3826>.
[RFC3912]
Daigle, L., "WHOIS Protocol Specification", RFC 3912, DOI 10.17487/RFC3912, , <https://www.rfc-editor.org/info/rfc3912>.
[RFC5869]
Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)", RFC 5869, DOI 10.17487/RFC5869, , <https://www.rfc-editor.org/info/rfc5869>.
[RFC5890]
Klensin, J., "Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework", RFC 5890, DOI 10.17487/RFC5890, , <https://www.rfc-editor.org/info/rfc5890>.
[RFC5891]
Klensin, J., "Internationalized Domain Names in Applications (IDNA): Protocol", RFC 5891, DOI 10.17487/RFC5891, , <https://www.rfc-editor.org/info/rfc5891>.
[RFC6781]
Kolkman, O., Mekking, W., and R. Gieben, "DNSSEC Operational Practices, Version 2", RFC 6781, DOI 10.17487/RFC6781, , <https://www.rfc-editor.org/info/rfc6781>.
[RFC6895]
Eastlake 3rd, D., "Domain Name System (DNS) IANA Considerations", BCP 42, RFC 6895, DOI 10.17487/RFC6895, , <https://www.rfc-editor.org/info/rfc6895>.
[RFC6979]
Pornin, T., "Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)", RFC 6979, DOI 10.17487/RFC6979, , <https://www.rfc-editor.org/info/rfc6979>.
[RFC7748]
Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748, DOI 10.17487/RFC7748, , <https://www.rfc-editor.org/info/rfc7748>.
[RFC8032]
Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/RFC8032, , <https://www.rfc-editor.org/info/rfc8032>.
[RFC8126]
Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, , <https://www.rfc-editor.org/info/rfc8126>.
[TWOFISH]
Schneier, B., "The Twofish Encryptions Algorithm: A 128-Bit Block Cipher, 1st Edition", .
[GNS]
Wachs, M., Schanzenbach, M., and C. Grothoff, "A Censorship-Resistant, Privacy-Enhancing and Fully Decentralized Name System", , <https://doi.org/10.1007/978-3-319-12280-9_9>.
[R5N]
Evans, N. S. and C. Grothoff, "R5N: Randomized recursive routing for restricted-route networks", , <https://doi.org/10.1109/ICNSS.2011.6060022>.
[Argon2]
Biryukov, A., Dinu, D., Khovratovich, D., and S. Josefsson, "The memory-hard Argon2 password hash and proof-of-work function", , <https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/>.

Authors' Addresses

Martin Schanzenbach
GNUnet e.V.
Boltzmannstrasse 3
85748 Garching
Germany
Christian Grothoff
Berner Fachhochschule
Hoeheweg 80
CH-2501 Biel/Bienne
Switzerland
Bernd Fix
GNUnet e.V.
Boltzmannstrasse 3
85748 Garching
Germany