Internet-Draft STIR Certs Short November 2023
Peterson Expires 12 May 2024 [Page]
Workgroup:
Network Working Group
Internet-Draft:
draft-peterson-stir-certificates-shortlived-05
Published:
Intended Status:
Standards Track
Expires:
Author:
J. Peterson
Neustar

Short-Lived Certificates for Secure Telephone Identity

Abstract

When certificates are used as credentials to attest the assignment of ownership of telephone numbers, some mechanism is required to provide certificate freshness. This document specifies short-lived certificates as a means of guaranteeing certificate freshness for secure telephone identity (STIR), potentially relying on the Automated Certificate Management Environment (ACME) or similar mechanisms to allow signers to acquire certificates as needed.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 May 2024.

Table of Contents

1. Introduction

The STIR problem statement [RFC7340] discusses many attacks on the telephone network that are enabled by impersonation, including various forms of robocalling, voicemail hacking, and swatting. One of the most important components of a system to prevent impersonation is the implementation of credentials which identify the parties who control telephone numbers. The STIR certificates [RFC8226] specification describes a credential system based on [X.509] version 3 certificates in accordance with [RFC5280] for that purpose. Those credentials can then be used by STIR authentication services [RFC8224] to sign PASSporT objects [RFC8225] carried in a SIP [RFC3261] request.

The STIR certificates document specifies an extension to X.509 that defines a Telephony Number (TN) Authorization List that may be included by certificate authorities in certificates. This extension provides additional information that relying parties can use when validating transactions with the certificate: either in the form of Service Provider Codes (SPCs) or telephone numbers. Telephone numbers or number ranges are used in delegate STIR certificates [RFC9060]. When a SIP request arrives at a terminating administrative domain, for example, the calling number attested by the SIP request can be compared to the TN Authorization List of the delegate certificate that signed the request to determine if the caller is authorized to use that calling number in SIP.

No specific recommendation is made in the STIR certificates document for a means of determining the freshness of certificates with a TN Authorization List. This document explores how short-lived certificates could be used as a means of preserving that freshness. Short-lived certificates also have a number of other desirable properties that fulfill important operational requirements for network operators. A mechanism such as the Automated Certificate Management Environment (ACME) [RFC8555] could be leveraged to manage these short-lived certificates, as well as various web-based interfaces or other out-of-band mechanisms. The interaction of STIR with ACME has already been explored in [RFC9448], so it provides a potentially attractive way of delivering short-lived certificates.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. Short-lived certificates for STIR

While there is no easy definition of what constitutes a "short-lived" certificate, the term typically refers to certificates that are valid only for days or even hours, as opposed to the months or years common in traditional public key infrastructures. When the private keying material associated with a certificate with an expiry of months or years is compromised by an adversary, the issuing authority must revoke the certificate, which requires relying parties to review certificate revocation lists or to access real-time status information with protocols such as OCSP. Short-lived certificates offer an alternative where, if compromised, certificates will shortly expire anyway, and rather than revoking and reissuing the certificate in response to a crisis, certificates routinely roll-over and cannot be cached for a long term by relying parties, minimizing their value to attackers.

One of the additional benefits of using short-lived certificates is that they do not require relying parties to perform any certificate freshness check. The trade-off is that the signer must acquire new certificates frequently, so the cost of round-trip times to the certificate authority is paid on the signer's side rather than the verifier's side; however, in environments where many parties may rely on a single certificate, or at least where a single certificate will be used to sign many transactions during its short lifetime, the overall architecture will incur fewer round-trip times to the certificate authority and thus less processing delay.

In the STIR context, the TN Authorization List defined in [RFC8226] adds a new wrinkle to the behavior of short-lived certificates, especially when the List is populated with telephone numbers or number ranges instead of Service Provider Codes (SPCs). A subject may have authority over multiple telephone numbers, but a particular short-lived certificate issued to that subject could attest the authority over all, some, or just one of those telephone numbers. Short-lived certificates permit a more on-demand certification process, where subjects acquire certificates as needed, potentially in reaction to calls being placed. A STIR authentication service could even acquire a new certificate on a per-call basis that can only sign for the calling party number of the call in question, as it would expire immediately thereafter. At the other end of the spectrum, a large enterprise service provider could acquire a certificate valid for millions of numbers, but expire the certificate after a very short duration - on the order of hours - to reduce the risk that the certificate would be compromised.

This inherent flexibility in the short-lived certificate architecture would also permit authentication services to implement very narrow policies for certificate usage. A large service provider who wanted to avoid revealing which phone numbers they controlled, for example, could provide no information in the certificate that signs a call other than just the single telephone number that corresponds to the calling party's number. How frequently the service provider feels that they need to expire that certificate and acquire a new one is entirely a matter of local policy. This makes it much harder for entities monitoring signatures over calls to guess who owns which numbers, and provides a much more complicated threat surface for attackers trying to compromise the service.

4. Certificate conveyance with 'x5c'

In order to reduce the burden on verification services, an authentication service could also piggyback a short-lived certificate onto the PASSporT, so that no network lookup and consequent round-trip delay would be required on the terminating side to acquire the new certificate. In particular, the poor cacheability of short-lived certificates may require frequent fetches of certificates via the "x5u" PASSporT header element when relying parties validate PASSporTs.

As an optimization, this specification permits the conveyance of the certificate chain for a short-lived certificate via the "x5c" JWS header element ([RFC7515] Section 4.1.6). The "x5c" element contains a base64 encoded DER representation of the certificate chain. STIR Verification service implementations compliant with this specification MUST support the "x5c" element; authentication services SHOULD use the "x5c" format for PASSporTs signed by certificates with an expiry shorter than one week. The presence of x5y creates PASSporT objects that are considerable larger than typical RFC8225 tokens, and the longer the certificate chain, the larger the PASSporT header will be. But provided the certificate chain leads to a trusted certification authority, "x5u" precludes the need for a round-trip time before validation at the STIR verification service.

An example PASSporT header with an "x5c" element with three certificates in its chain might look as follows:

  { "typ":"passport",
    "ppt":"div",
    "alg":"ES256",
    "x5c":
    [ "MIIE3jCCA8agAwIBAgICAwEwDQYJKoZIhvcNAQEFBQAwYzELMAkGA1UEBhMCVVM
       xITAfBgNVBAoTGFRoZSBHbyBEYWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR2
       8gRGFkZHkgQ2xhc3MgMiBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTAeFw0wNjExM
       TYwMTU0MzdaFw0yNjExMTYwMTU0MzdaMIHKMQswCQYDVQQGEwJVUzEQMA4GA1UE
       CBMHQXJpem9uYTETMBEGA1UEBxMKU2NvdHRzZGFsZTEaMBgGA1UEChMRR29EYWR
       keS5jb20sIEluYy4xMzAxBgNVBAsTKmh0dHA6Ly9jZXJ0aWZpY2F0ZXMuZ29kYW
       RkeS5jb20vcmVwb3NpdG9yeTEwMC4GA1UEAxMnR28gRGFkZHkgU2VjdXJlIENlc
       nRpZmljYXRpb24gQXV0aG9yaXR5MREwDwYDVQQFEwgwNzk2OTI4NzCCASIwDQYJ
       KoZIhvcNAQEBBQADggEPADCCAQoCggEBAMQt1RWMnCZM7DI161+4WQFapmGBWTt
       wY6vj3D3HKrjJM9N55DrtPDAjhI6zMBS2sofDPZVUBJ7fmd0LJR4h3mUpfjWoqV
       Tr9vcyOdQmVZWt7/v+WIbXnvQAjYwqDL1CBM6nPwT27oDyqu9SoWlm2r4arV3aL
       GbqGmu75RpRSgAvSMeYddi5Kcju+GZtCpyz8/x4fKL4o/K1w/O5epHBp+YlLpyo
       7RJlbmr2EkRTcDCVw5wrWCs9CHRK8r5RsL+H0EwnWGu1NcWdrxcx+AuP7q2BNgW
       JCJjPOq8lh8BJ6qf9Z/dFjpfMFDniNoW1fho3/Rb2cRGadDAW/hOUoz+EDU8CAw
       EAAaOCATIwggEuMB0GA1UdDgQWBBT9rGEyk2xF1uLuhV+auud2mWjM5zAfBgNVH
       SMEGDAWgBTSxLDSkdRMEXGzYcs9of7dqGrU4zASBgNVHRMBAf8ECDAGAQH/AgEA
       MDMGCCsGAQUFBwEBBCcwJTAjBggrBgEFBQcwAYYXaHR0cDovL29jc3AuZ29kYWR
       keS5jb20wRgYDVR0fBD8wPTA7oDmgN4Y1aHR0cDovL2NlcnRpZmljYXRlcy5nb2
       RhZGR5LmNvbS9yZXBvc2l0b3J5L2dkcm9vdC5jcmwwSwYDVR0gBEQwQjBABgRVH
       SAAMDgwNgYIKwYBBQUHAgEWKmh0dHA6Ly9jZXJ0aWZpY2F0ZXMuZ29kYWRkeS5j
       b20vcmVwb3NpdG9yeTAOBgNVHQ8BAf8EBAMCAQYwDQYJKoZIhvcNAQEFBQADggE
       BANKGwOy9+aG2Z+5mC6IGOgRQjhVyrEp0lVPLN8tESe8HkGsz2ZbwlFalEzAFPI
       UyIXvJxwqoJKSQ3kbTJSMUA2fCENZvD117esyfxVgqwcSeIaha86ykRvOe5GPLL
       5CkKSkB2XIsKd83ASe8T+5o0yGPwLPk9Qnt0hCqU7S+8MxZC9Y7lhyVJEnfzuz9
       p0iRFEUOOjZv2kWzRaJBydTXRE4+uXR21aITVSzGh6O1mawGhId/dQb8vxRMDsx
       uxN89txJx9OjxUUAiKEngHUuHqDTMBqLdElrRhjZkAzVvb3du6/KFUJheqwNTrZ
       EjYx8WnM25sgVjOuH0aBsXBTWVU+4=",
      "MIIE+zCCBGSgAwIBAgICAQ0wDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1Z
       hbGlDZXJ0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIE
       luYy4xNTAzBgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb
       24gQXV0aG9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8x
       IDAeBgkqhkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTA0MDYyOTE3MDY
       yMFoXDTI0MDYyOTE3MDYyMFowYzELMAkGA1UEBhMCVVMxITAfBgNVBAoTGFRoZS
       BHbyBEYWRkeSBHcm91cCwgSW5jLjExMC8GA1UECxMoR28gRGFkZHkgQ2xhc3MgM
       iBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTCCASAwDQYJKoZIhvcNAQEBBQADggEN
       ADCCAQgCggEBAN6d1+pXGEmhW+vXX0iG6r7d/+TvZxz0ZWizV3GgXne77ZtJ6XC
       APVYYYwhv2vLM0D9/AlQiVBDYsoHUwHU9S3/Hd8M+eKsaA7Ugay9qK7HFiH7Eux
       6wwdhFJ2+qN1j3hybX2C32qRe3H3I2TqYXP2WYktsqbl2i/ojgC95/5Y0V4evLO
       tXiEqITLdiOr18SPaAIBQi2XKVlOARFmR6jYGB0xUGlcmIbYsUfb18aQr4CUWWo
       riMYavx4A6lNf4DD+qta/KFApMoZFv6yyO9ecw3ud72a9nmYvLEHZ6IVDd2gWMZ
       Eewo+YihfukEHU1jPEX44dMX4/7VpkI+EdOqXG68CAQOjggHhMIIB3TAdBgNVHQ
       4EFgQU0sSw0pHUTBFxs2HLPaH+3ahq1OMwgdIGA1UdIwSByjCBx6GBwaSBvjCBu
       zEkMCIGA1UEBxMbVmFsaUNlcnQgVmFsaWRhdGlvbiBOZXR3b3JrMRcwFQYDVQQK
       Ew5WYWxpQ2VydCwgSW5jLjE1MDMGA1UECxMsVmFsaUNlcnQgQ2xhc3MgMiBQb2x
       pY3kgVmFsaWRhdGlvbiBBdXRob3JpdHkxITAfBgNVBAMTGGh0dHA6Ly93d3cudm
       FsaWNlcnQuY29tLzEgMB4GCSqGSIb3DQEJARYRaW5mb0B2YWxpY2VydC5jb22CA
       QEwDwYDVR0TAQH/BAUwAwEB/zAzBggrBgEFBQcBAQQnMCUwIwYIKwYBBQUHMAGG
       F2h0dHA6Ly9vY3NwLmdvZGFkZHkuY29tMEQGA1UdHwQ9MDswOaA3oDWGM2h0dHA
       6Ly9jZXJ0aWZpY2F0ZXMuZ29kYWRkeS5jb20vcmVwb3NpdG9yeS9yb290LmNybD
       BLBgNVHSAERDBCMEAGBFUdIAAwODA2BggrBgEFBQcCARYqaHR0cDovL2NlcnRpZ
       mljYXRlcy5nb2RhZGR5LmNvbS9yZXBvc2l0b3J5MA4GA1UdDwEB/wQEAwIBBjAN
       BgkqhkiG9w0BAQUFAAOBgQC1QPmnHfbq/qQaQlpE9xXUhUaJwL6e4+PrxeNYiY+
       Sn1eocSxI0YGyeR+sBjUZsE4OWBsUs5iB0QQeyAfJg594RAoYC5jcdnplDQ1tgM
       QLARzLrUc+cb53S8wGd9D0VmsfSxOaFIqII6hR8INMqzW/Rn453HWkrugp++85j
       09VZw==",
      "MIIC5zCCAlACAQEwDQYJKoZIhvcNAQEFBQAwgbsxJDAiBgNVBAcTG1ZhbGlDZXJ
       0IFZhbGlkYXRpb24gTmV0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNT
       AzBgNVBAsTLFZhbGlDZXJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0a
       G9yaXR5MSEwHwYDVQQDExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkq
       hkiG9w0BCQEWEWluZm9AdmFsaWNlcnQuY29tMB4XDTk5MDYyNjAwMTk1NFoXDTE
       5MDYyNjAwMTk1NFowgbsxJDAiBgNVBAcTG1ZhbGlDZXJ0IFZhbGlkYXRpb24gTm
       V0d29yazEXMBUGA1UEChMOVmFsaUNlcnQsIEluYy4xNTAzBgNVBAsTLFZhbGlDZ
       XJ0IENsYXNzIDIgUG9saWN5IFZhbGlkYXRpb24gQXV0aG9yaXR5MSEwHwYDVQQD
       ExhodHRwOi8vd3d3LnZhbGljZXJ0LmNvbS8xIDAeBgkqhkiG9w0BCQEWEWluZm9
       AdmFsaWNlcnQuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDOOnHK5a
       vIWZJV16vYdA757tn2VUdZZUcOBVXc65g2PFxTXdMwzzjsvUGJ7SVCCSRrCl6zf
       N1SLUzm1NZ9WlmpZdRJEy0kTRxQb7XBhVQ7/nHk01xC+YDgkRoKWzk2Z/M/VXwb
       P7RfZHM047QSv4dk+NoS/zcnwbNDu+97bi5p9wIDAQABMA0GCSqGSIb3DQEBBQU
       AA4GBADt/UG9vUJSZSWI4OB9L+KXIPqeCgfYrx+jFzug6EILLGACOTb2oWH+heQ
       C1u+mNr0HZDzTuIYEZoDJJKPTEjlbVUjP9UNV+mWwD5MlM/Mtsq2azSiGM5bUMM
       j4QssxsodyamEwCW/POuZ6lcg5Ktz885hZo+L7tdEy8W9ViH0Pd"]
 }

[TBD - certificate above is the example from RFC7515]

A potential alternative approach would be that [RFC8224] already provides a way of pointing to a certificate in a MIME body associated with the SIP request. For out-of-band uses of STIR, however, having the certificate embedded in the PASSporT itself is a superior option.

5. Certificate Acquisition with ACME

One of the primary challenges facing short-lived certificates is building an operational system that allows signers to acquire new certificates and put them to immediate use. ACME [RFC8555] is designed for exactly this purpose. After a client registers with an ACME server, and the authority of the client for the names in question is established (through means such as [RFC9448]), the client can at any time apply for a certificate to be issued by sending an appropriate JSON request to the server. That request will contain a CSR [RFC2986] indicating the intended scope of authority as well the validity interval of the certificate in question. Ultimately, this will enable the client to download the certificate from a certificate URL designated by the server.

ACME is based on the concept that clients establish accounts at an ACME server, and that through challenges, the server learns which identifiers it will issue for certificates requested for an account. Any given certificate issued for an account can be for just one of those identifiers, or potentially for more: this is determined by the CSR that an ACME client creates for a particular order. Thus, a service provider with authority for millions of identifiers - that is, millions of telephone numbers - could create a CSR for an ACME order that requests a certificate only associated with one of those telephone numbers if it so desired. The same would be true of certificates based on Service Provider Codes (SPCs) as described in [RFC8226]: a service provider might have just one SPC or perhaps many. ACME thus puts needed flexibility into the hands of the clients requesting certificates to determine how much of their authority they want to invest in any given certificate.

[RFC9448] uses the ATC framework of [RFC9447] to generate tokens that are provided to the CA in response to ACME challenges. For a usage with short-term certificates, it may make sense for the ATC tokens to have a relatively long expiry, so that the ACME client does not have to constantly return to the Token Authority for new tokens. This could potentially be used with the ACME STAR [RFC8739] mechanism as well.

6. IANA Considerations

This document contains no actions for the IANA.

7. Privacy Considerations

Short-lived certificates provide attractive privacy properties when compared to real-time status query protocols like OCSP, which require relying parties to perform a network dip that can reveal a great deal about the source and destination of communications. For STIR, these problems are compounded by the presence of the TN Authorization List extension to certificates. Short-lived certificates can minimize the data that needs to appear in the TN Authorization List, and consequently reduce the amount of information about the caller leaked by certificate usage to an amount equal to what is leaked by the call signaling itself.

8. Security Considerations

This document is entirely about security. For further information on certificate security and practices, see [RFC5280], in particular its Security Considerations. The Security Considerations of [RFC8555] are relevant to the use of ACME to acquire short-lived certificates.

9. Acknowledgments

Stephen Farrell, Jack Richard and Chris Wendt provided key input to the discussions leading to this document.

10. References

10.1. Normative References

[ATIS-0300251]
ATIS Recommendation 0300251, "Codes for Identification of Service Providers for Information Exchange", .
[DSS]
National Institute of Standards and Technology, U.S. Department of Commerce | NIST FIPS PUB 186-4, "Digital Signature Standard, version 4", .
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC2986]
Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request Syntax Specification Version 1.7", RFC 2986, DOI 10.17487/RFC2986, , <https://www.rfc-editor.org/info/rfc2986>.
[RFC3261]
Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, DOI 10.17487/RFC3261, , <https://www.rfc-editor.org/info/rfc3261>.
[RFC5280]
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, , <https://www.rfc-editor.org/info/rfc5280>.
[RFC7515]
Jones, M., Bradley, J., and N. Sakimura, "JSON Web Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, , <https://www.rfc-editor.org/info/rfc7515>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
[RFC8224]
Peterson, J., Jennings, C., Rescorla, E., and C. Wendt, "Authenticated Identity Management in the Session Initiation Protocol (SIP)", RFC 8224, DOI 10.17487/RFC8224, , <https://www.rfc-editor.org/info/rfc8224>.
[RFC8225]
Wendt, C. and J. Peterson, "PASSporT: Personal Assertion Token", RFC 8225, DOI 10.17487/RFC8225, , <https://www.rfc-editor.org/info/rfc8225>.
[RFC8226]
Peterson, J. and S. Turner, "Secure Telephone Identity Credentials: Certificates", RFC 8226, DOI 10.17487/RFC8226, , <https://www.rfc-editor.org/info/rfc8226>.
[RFC8555]
Barnes, R., Hoffman-Andrews, J., McCarney, D., and J. Kasten, "Automatic Certificate Management Environment (ACME)", RFC 8555, DOI 10.17487/RFC8555, , <https://www.rfc-editor.org/info/rfc8555>.
[RFC8739]
Sheffer, Y., Lopez, D., Gonzalez de Dios, O., Pastor Perales, A., and T. Fossati, "Support for Short-Term, Automatically Renewed (STAR) Certificates in the Automated Certificate Management Environment (ACME)", RFC 8739, DOI 10.17487/RFC8739, , <https://www.rfc-editor.org/info/rfc8739>.
[RFC9060]
Peterson, J., "Secure Telephone Identity Revisited (STIR) Certificate Delegation", RFC 9060, DOI 10.17487/RFC9060, , <https://www.rfc-editor.org/info/rfc9060>.
[RFC9447]
Peterson, J., Barnes, M., Hancock, D., and C. Wendt, "Automated Certificate Management Environment (ACME) Challenges Using an Authority Token", RFC 9447, DOI 10.17487/RFC9447, , <https://www.rfc-editor.org/info/rfc9447>.
[RFC9448]
Wendt, C., Hancock, D., Barnes, M., and J. Peterson, "TNAuthList Profile of Automated Certificate Management Environment (ACME) Authority Token", RFC 9448, DOI 10.17487/RFC9448, , <https://www.rfc-editor.org/info/rfc9448>.
[X.509]
ITU-T Recommendation X.509 (10/2012) | ISO/IEC 9594-8, "Information technology - Open Systems Interconnection - The Directory: Public-key and attribute certificate frameworks", .
[X.680]
ITU-T Recommendation X.680 (08/2015) | ISO/IEC 8824-1, "Information Technology - Abstract Syntax Notation One: Specification of basic notation".
[X.681]
ITU-T Recommendation X.681 (08/2015) | ISO/IEC 8824-2, "Information Technology - Abstract Syntax Notation One: Information Object Specification".
[X.682]
ITU-T Recommendation X.682 (08/2015) | ISO/IEC 8824-2, "Information Technology - Abstract Syntax Notation One: Constraint Specification".
[X.683]
ITU-T Recommendation X.683 (08/2015) | ISO/IEC 8824-3, "Information Technology - Abstract Syntax Notation One: Parameterization of ASN.1 Specifications".

10.2. Informative References

[RFC7340]
Peterson, J., Schulzrinne, H., and H. Tschofenig, "Secure Telephone Identity Problem Statement and Requirements", RFC 7340, DOI 10.17487/RFC7340, , <https://www.rfc-editor.org/info/rfc7340>.
[RFC7375]
Peterson, J., "Secure Telephone Identity Threat Model", RFC 7375, DOI 10.17487/RFC7375, , <https://www.rfc-editor.org/info/rfc7375>.
[X.520]
ITU-T Recommendation X.520 (10/2012) | ISO/IEC 9594-6, "Information technology - Open Systems Interconnection - The Directory: Selected Attribute Types", .

Author's Address

Jon Peterson
Neustar, Inc.