Internet-Draft I2INF Framework July 2024
Jeong, et al. Expires 23 January 2025 [Page]
Workgroup:
Operations and Management Area Working Group
Internet-Draft:
draft-jeong-opsawg-i2inf-framework-00
Published:
Intended Status:
Informational
Expires:
Authors:
J. Jeong, Ed.
Sungkyunkwan University
Y. Shen
Sungkyunkwan University
Y. Ahn
Sungkyunkwan University
Y. Kim
Soongsil University
E. Duarte Jr.
Federal University of Parana

A Framework for Interface to In-Network Functions (I2INF)

Abstract

This document specifies a framework for Interface to In-Network Functions (I2INF) for a user's services involved in both networks and applications. In-Network Functions (INF) include In-Network Computing Functions (INCF) in Network Functions Virtualization (NFV) and Software-Defined Networking (SDN). They also include In-Network Application Functions (INAF) in Internet-of-Things (IoT) Devices, Software-Defined Vehicles (SDV), and Unmanned Aerial Vehicles (UAV). This document describes an I2INF framework with its components and interfaces to configure and monitor the INFs for the user's services.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 January 2025.

Table of Contents

1. Introduction

Network softwarization is widely deployed for network services in network infrastructure (e.g., 5G mobile networks [TS-23.501]), clouding computing, and edge computing. The network softwarization is realized by the technologies of Network Functions Virtualization (NFV) [ETSI-NFV][ETSI-NFV-Release-2] and Software-Defined Networking (SDN) [RFC7149]. Also, Intent-Based Networking (IBN) [RFC9315][Survey-IBN-CST-2023] can be used for intelligent network services as well as intelligent application services.

As per definitions of Computing in the Network (COIN), a Programmable Network Device (PND) in an In-Network Computing (INC) environment can have multiple kinds of capabilities (i.e., features) [I-D.irtf-coinrg-coin-terminology] to work with other PNDs. PNDs from different product lines or vendors can have different capabilities for INC functions. When working togther for a COIN system, the PDNs may be unaware of capabilities of others. Therefore, it is necessary to define a standard interface for PNDs to exchange their capabilities.

For the configuration and monitoring of Application Functions (AFs) for applications and Network Functions (NFs) for network services for a given user's service, a standard framework with interfaces is required. There is no standard data model to describe the capabilities of AFs and NFs for a user-demanded service. Also, there is no standard data model for a registration interface that is used to register the capabilities of those AFs and NFs with a controller for the requested service. In addition, there are no standard interfaces to configure and monitor those AFs and NFs according to a user's intent. Interface to Network Security Functions (I2NSF) was standardized for the control and management of Network Security Services with Network Security Functions (NSFs) [RFC8329] [I-D.ietf-i2nsf-applicability]. This document is based on the work of I2NSF for a more general control and management framework for intelligent services consisting of AFs and NFs.

This document specifies a framework for Interface to In-Network Functions (I2INF) for In-Network Functions (INFs) having different capabilities. The INFs consist of Network Functions (NFs) including PNDs and Application Functions (AFs) in order to compose a user's services. First of all, INFs include In-Network Computing Functions (INCF) as NFs within NFV and SDN [I-D.irtf-coinrg-use-cases]. Secondly, they also include In-Network Application Functions (INAF) as AFs within Internet-of-Things (IoT) Devices, Software-Defined Vehicles (SDV) [AUTOSAR-SDV][Eclipse-SDV][COVESA], and Unmanned Aerial Vehicles (UAV). Finally, this document shows how Intent-Based Networking (IBN) can be realized with the proposed I2INF framework and its interfaces for a user's services consisting of a combination of INFs in a target network.

2. Terminology

This document uses the terminology described in [RFC9315], [RFC8329], [I-D.irtf-coinrg-coin-terminology], [I-D.irtf-coinrg-use-cases], [I-D.jeong-i2nsf-security-management-automation], [I-D.jeong-nmrg-ibn-network-management-automation], and [I-D.yang-i2nsf-security-policy-translation]. In addition, the following terms are defined below:

3. A Framework for Interface to In-Network Functions

This section specifies a framework for Interface to In-Network Functions (I2INF) with its components and interfaces among the components. Figure 1 shows Wireless and Wired Networks in a Central Cloud for the I2INF framework having network entities and Mobile Objects (MO). On the other hand, Figure 2 shows a VNF-Consensus Architecture in an Edge Cloud for the I2INF framework to synchonize the SDN Controllers for flow table information in the same Edge Cloud [NFV-COIN].

                                  Central Cloud
                   *******************************************
                 *                                             *
                *              +------------------+             *
               *               | Cloud Controller |              *
               *               +------------------+              *
               *                         ^                       *
                *                        |                      *
                 *                       v                     *
                   *******************************************
                    ^                   ^                    ^
                    |                   |                    |
                    V                   V                    V
              +-----------+       +-----------+        +-----------+
              |Edge-Cloud1|       |Edge-Cloud2|        |Edge-Cloud3|
              +-----------+       +-----------+        +-----------+
                    ^                   ^                    ^
                    |                   |                    |
                    V                   V                    V
               +---------+         +---------+         +---------+
               | IP-RSU1 |<------->| IP-RSU2 |<------->| IP-RSU3 |
               +---------+         +---------+         +---------+
                    ^                   ^                    ^
                    :                   :                    :
           +-----------------+ +-----------------+   +-----------------+
           |        : V2I    | |        : V2I    |   |       : V2I     |
           |        v        | |        v        |   |       v         |
+--------+ |   +--------+    | |   +--------+    |   |   +--------+    |
|   MO1  |===> |   MO2  |===>| |   |   MO3  |===>|   |   |   MO4  |===>|
+--------+<...>+--------+<........>+--------+    |   |   +--------+    |
           V2V     ^         V2V        ^        |   |        ^        |
           |       : V2V     | |        : V2V    |   |        : V2V    |
           |       v         | |        v        |   |        v        |
           |  +--------+     | |   +--------+    |   |    +--------+   |
           |  |   MO5  |===> | |   |   MO6  |===>|   |    |   MO7  |==>|
           |  +--------+     | |   +--------+    |   |    +--------+   |
           +-----------------+ +-----------------+   +-----------------+
                 Subnet1              Subnet2              Subnet3
                (Prefix1)            (Prefix2)            (Prefix3)

        <----> Wired Link   <....> Wireless Link   ===> Moving Direction
Figure 1: Wireless and Wired Networks in Central Cloud for I2INF Framework
                        Edge Cloud                      Central Cloud
        ******************************************        **********
       *                                          *     *            *
      *                                            *   * +----------+ *
      *  +---------------+   +-----------------+   *   * |  Cloud   | *
      *  | VNF-Consensus |<->| Edge Controller |<->*<->* |Controller| *
      *  +-------^-------+   +--------^--------+   *   * +----------+ *
      *          |                    |            *   *              *
       *         v                    V           *     *            *
        ******************************************        **********
        ^                    ^                    ^
        |                    |                    |
        V                    V                    V
+---------------+    +---------------+    +---------------+
|SDN-Controller1|    |SDN-Controller2|    |SDN-Controller3|
+---------------+    +---------------+    +---------------+
        ^                    ^                    ^
        |                    |                    |
        V                    V                    V
+---------------+    +---------------+    +---------------+
|   +-----+     |    |   +-----+     |    |   +-----+     |
|   | SW1 |     |    |   | SW3 |     |    |   | SW5 |     |
|   +---^-+     |    |   +---^-+     |    |   +---^-+     |
|       |       |    |       |       |    |       |       |
|     +-V---+   |    |     +-V---+   |    |     +-V---+   |
|     | SW2 |   |    |     | SW4 |   |    |     | SW6 |   |
|     +-----+   |    |     +-----+   |    |     +-----+   |
+---------------+    +---------------+    +---------------+
   SDN-Network1         SDN-Network2         SDN-Network3
     (Subnet1)            (Prefix2)            (Prefix3)

<----> Wired Link
Figure 2: VNF-Consensus Architecture in Edge Cloud for I2INF Framework

For the automatic network configuration of MOs, an intent-based management is required between the central cloud and MOs [I-D.jeong-nmrg-ibn-network-management-automation]. Figure 3 shows an I2INF framework as an IBS for an MO. The framework consists of a Central Cloud and an MO. Figure 4 shows an I2INF framework as an IBS for an Edge Cloud. The framework consists of a Central Cloud and an Edge Cloud.

                         <Central Cloud (CC)>
+---------------------------------------------------------------------+
| +------------------+                      +--------------------+    |
| |    I2INF User    |          +---------->|   I2INF Database   |    |
| +------------------+          |           +--------------------+    |
|          ^                    |                     ^               |
|          |                    | Database            | Database      |
|          |                    | Interface           | Interface     |
|          | Consumer-Facing    |                     V               |
|          | Interface (Intent) |           +--------------------+    |
|          |                    | +-------->|    Cloud Analyzer  |<-+ |
|          |                    | |         +--------------------+  | |
|          V                    | |Analytics                        | |
| +------------------+<---------+ |Interface                        | |
| | Cloud Controller |<-----------+         +--------------------+  | |
| +------------------+<-------------------->|Vendor's Mgmt System|  | |
|          ^         Registration Interface +--------------------+  | |
|          |                                          ^             | |
+----------|------------------------------------------|-------------|-+
           | Controller-Facing Interface   VMS-Facing |   Analyzer- |
           |     (High-level Policy)        Interface |   Facing    |
           |                                          |   Interface |
+----------|------------------------------------------|-------------|-+
|          |                                          |             | |
|          v                                          v             | |
| +------------------+     Registration     +--------------------+  | |
| |  MO Controller   |<-------------------->|    MO Vendor's     |  | |
| +------------------+      Interface       |    Mgmt System     |  | |
|          ^      ^                         +--------------------+  | |
|          |      |                                                 | |
|          |      |                                                 | |
|          |      |   Analytics Interface   +--------------------+  | |
|          |      +------------------------>|    MO Analyzer     |<-+ |
|          |                                +--------------------+    |
|          | SF-Facing Interface                      ^               |
|          |  (Low-level Policy)                      |               |
|          |                                          |               |
|          |                                          |               |
|          |    +--------------+----------------------+---+           |
|          |    |              |   Monitoring Interface   |           |
|          v    v              v                          v           |
|   +---------------+  +---------------+        +---------------+     |
|   |     SF-1      |  |     SF-2      |........|     SF-n      |     |
|   |   (Router)    |  |  (Firewall)   |        |  (Navigator)  |     |
|   +---------------+  +---------------+        +---------------+     |
+---------------------------------------------------------------------+
                        <Mobile Object (MO)>
Figure 3: A Framework for Interface to In-Network Functions for Mobile Object
                         <Central Cloud (CC)>
+---------------------------------------------------------------------+
| +------------------+                      +--------------------+    |
| |    I2INF User    |          +---------->|   I2INF Database   |    |
| +------------------+          |           +--------------------+    |
|          ^                    |                     ^               |
|          |                    | Database            | Database      |
|          |                    | Interface           | Interface     |
|          | Consumer-Facing    |                     V               |
|          | Interface (Intent) |           +--------------------+    |
|          |                    | +-------->|    Cloud Analyzer  |<-+ |
|          |                    | |         +--------------------+  | |
|          V                    | |Analytics                        | |
| +------------------+<---------+ |Interface                        | |
| | Cloud Controller |<-----------+         +--------------------+  | |
| +------------------+<-------------------->|Vendor's Mgmt System|  | |
|          ^         Registration Interface +--------------------+  | |
|          |                                          ^             | |
+----------|------------------------------------------|-------------|-+
           | Controller-Facing Interface   VMS-Facing |   Analyzer- |
           |     (High-level Policy)        Interface |   Facing    |
           |                                          |   Interface |
+----------|------------------------------------------|-------------|-+
|          |                                          |             | |
|          v                                          v             | |
| +------------------+     Registration     +--------------------+  | |
| |  Edge Controller |<-------------------->|   Edge Vendor's    |  | |
| +------------------+      Interface       |    Mgmt System     |  | |
|          ^      ^                         +--------------------+  | |
|          |      |                                                 | |
|          |      |                                                 | |
|          |      |   Analytics Interface   +--------------------+  | |
|          |      +------------------------>|    Edge Analyzer   |<-+ |
|          |                                +--------------------+    |
|          | SF-Facing Interface                      ^               |
|          |  (Low-level Policy)                      |               |
|          |                                          |               |
|          |                                          |               |
|          |    +--------------+----------------------+---+           |
|          |    |              |   Monitoring Interface   |           |
|          v    v              v                          v           |
|   +---------------+  +----------------------+   +---------------+   |
|   |     SF-1      |  |         SF-2         |...|      SF-n     |   |
|   |(VNF-Consensus)|  |(NFV-Failure-Detector)|   |  (NFV-RBCast) |   |
|   +---------------+  +----------------------+   +---------------+   |
+---------------------------------------------------------------------+
                          <Edge Cloud (EC)>
Figure 4: A Framework for Interface to In-Network Functions for Edge Cloud

A Central Cloud (CC) consists of I2INF User (as network administrator), Cloud Controller (as an orchestrator for a central cloud), I2INF Database (as a main repository for INF management and monitoring), and Cloud Analyzer (as a monitoring data analyzer for MOs and ECs) such as Network Data Analytics Function (NWDAF) in 5G networks [TS-23.288][TS-29.520].

An IBS in an MO (or EC) is composed of MO Controller (or Edge Controller) as a manager for the MO (or EC), MO Analyzer (or Edge Analyzer) as a monitoring data analyzer for an MO (or EC)) [I-D.jeong-nmrg-ibn-network-management-automation], Vendor's Management System (as a vendor system to provide cloud-native containers) [RFC8329], and Service Functions (SFs). As SFs for the MO, NFs include router, DNS server, and firewall [I-D.jeong-nmrg-ibn-network-management-automation]), and AFs include safe driver and navigator. As SFs for the EC, NFs include VNF-Consensus, NFV-Failure-Detector, and NFV-RBCast (i.e., NFV Reliable-Ordered Broadcast) [NFV-COIN]). The functions of each component is described as follows.

4. Interfaces in the I2INF Framework

Together with the designed I2INF framework, in Figure 3 and Figure 4, interfaces are also defined between a pair of system components in the central cloud and MO (or EC), respectively. These interfaces include

The intent, high-level policy, and low-level policy can be either XML documents [RFC6020][RFC7950] or YAML documents [YAML]. They can be delivered to the destination components via NETCONF [RFC6241], RESTCONF [RFC8040], or REST API [REST].

As shown in Figure 3 and Figure 4, the I2INF Framework enforces an intent from an I2INF User, which as a user (or administrator), into a target system such as an MO (e.g., SDV) and an Edge Cloud. The intent from the I2INF User can be translated into the corresponding high-level policy by an intent translator in the Cloud Controller of the Central Cloud [I-D.jeong-i2nsf-security-management-automation]. The high-level policy can also be translated into the corresponding low-level policy by a policy translator in the MO Controller of the MO or the Edge Controller of the Edge Cloud [I-D.yang-i2nsf-security-policy-translation]. For the MO, as shown in Figure 3, the low-level policy is dispatched from the MO Controller to appropriate Service Functions (SFs) in the MO, such as Router, Firewall, and Navigator. Also, for the EC, as shown in Figure 4, the low-level policy is dispatched from the Edge Controller to appropriate Service Functions (SFs) in the EC, such as VNF-Consensus, NFV-Failure-Detector, and NFV-RBCast. Through the monitoring of the SFs, the activity and performance of the SFs in the MO (or EC) is monitored and analyzed by the MO Analyzer (or Edge Analyzer) in the MO (or EC). If needed, the rules of the high-level or low-level network policy can be augmented by the MO Analyzer (or Edge Analyzer). Also, new rules can be automatically generated and configured to appropriate SFs by the MO Analyzer (or Edge Analyzer).

Therefore, this document proposes an I2INF framework as an IBS for both MOs and ECs. Through this IBS, the SFs (i.e., NFs and AFs) in the MOs and ECs can be better configured and managed. Base on the proposed framework, both virtualized NFs and AFs can be efficiently orchestrated for agile resource re-configurations and flexible updates.

5. IANA Considerations

This document does not require any IANA actions.

6. Security Considerations

The same security considerations for the Interface to Network Security Functions (I2NSF) Framework [RFC8329] are applicable to the Intent-Based System this document.

7. References

7.1. Normative References

[RFC6020]
Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, , <https://www.rfc-editor.org/info/rfc6020>.
[RFC6241]
Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, , <https://www.rfc-editor.org/info/rfc6241>.
[RFC7149]
Boucadair, M. and C. Jacquenet, "Software-Defined Networking: A Perspective from within a Service Provider Environment", RFC 7149, DOI 10.17487/RFC7149, , <https://www.rfc-editor.org/info/rfc7149>.
[RFC7950]
Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, , <https://www.rfc-editor.org/info/rfc7950>.
[RFC8040]
Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, , <https://www.rfc-editor.org/info/rfc8040>.
[RFC8329]
Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R. Kumar, "Framework for Interface to Network Security Functions", RFC 8329, DOI 10.17487/RFC8329, , <https://www.rfc-editor.org/info/rfc8329>.
[RFC9315]
Clemm, A., Ciavaglia, L., Granville, L. Z., and J. Tantsura, "Intent-Based Networking - Concepts and Definitions", RFC 9315, DOI 10.17487/RFC9315, , <https://www.rfc-editor.org/info/rfc9315>.
[RFC9365]
Jeong, J., Ed., "IPv6 Wireless Access in Vehicular Environments (IPWAVE): Problem Statement and Use Cases", RFC 9365, DOI 10.17487/RFC9365, , <https://www.rfc-editor.org/info/rfc9365>.

7.2. Informative References

[I-D.ietf-i2nsf-applicability]
Jeong, J. P., Hyun, S., Ahn, T., Hares, S., and D. Lopez, "Applicability of Interfaces to Network Security Functions to Network-Based Security Services", Work in Progress, Internet-Draft, draft-ietf-i2nsf-applicability-18, , <https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-applicability-18>.
[I-D.irtf-coinrg-coin-terminology]
Hong, J., Kunze, I., Wehrle, K., Trossen, D., Montpetit, M., de Foy, X., Griffin, D., and M. Rio, "Terminology for Computing in the Network", Work in Progress, Internet-Draft, draft-irtf-coinrg-coin-terminology-01, , <https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-coin-terminology-01>.
[I-D.irtf-coinrg-use-cases]
Kunze, I., Wehrle, K., Trossen, D., Montpetit, M., de Foy, X., Griffin, D., and M. Rio, "Use Cases for In-Network Computing", Work in Progress, Internet-Draft, draft-irtf-coinrg-use-cases-05, , <https://datatracker.ietf.org/doc/html/draft-irtf-coinrg-use-cases-05>.
[I-D.ietf-i2nsf-capability-data-model]
Hares, S., Jeong, J. P., Kim, J. T., Moskowitz, R., and Q. Lin, "I2NSF Capability YANG Data Model", Work in Progress, Internet-Draft, draft-ietf-i2nsf-capability-data-model-32, , <https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-capability-data-model-32>.
[I-D.ietf-i2nsf-registration-interface-dm]
Hyun, S., Jeong, J. P., Roh, T., Wi, S., and J. Jung-Soo, "I2NSF Registration Interface YANG Data Model for NSF Capability Registration", Work in Progress, Internet-Draft, draft-ietf-i2nsf-registration-interface-dm-26, , <https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-registration-interface-dm-26>.
[I-D.ietf-i2nsf-consumer-facing-interface-dm]
Jeong, J. P., Chung, C., Ahn, T., Kumar, R., and S. Hares, "I2NSF Consumer-Facing Interface YANG Data Model", Work in Progress, Internet-Draft, draft-ietf-i2nsf-consumer-facing-interface-dm-31, , <https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-consumer-facing-interface-dm-31>.
[I-D.ietf-i2nsf-nsf-facing-interface-dm]
Kim, J. T., Jeong, J. P., Jung-Soo, J., Hares, S., and Q. Lin, "I2NSF Network Security Function-Facing Interface YANG Data Model", Work in Progress, Internet-Draft, draft-ietf-i2nsf-nsf-facing-interface-dm-29, , <https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-nsf-facing-interface-dm-29>.
[I-D.ietf-i2nsf-nsf-monitoring-data-model]
Jeong, J. P., Lingga, P., Hares, S., Xia, L., and H. Birkholz, "I2NSF NSF Monitoring Interface YANG Data Model", Work in Progress, Internet-Draft, draft-ietf-i2nsf-nsf-monitoring-data-model-20, , <https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-nsf-monitoring-data-model-20>.
[I-D.lingga-i2nsf-analytics-interface-dm]
Lingga, P., Jeong, J. P., and Y. Choi, "I2NSF Analytics Interface YANG Data Model", Work in Progress, Internet-Draft, draft-lingga-i2nsf-analytics-interface-dm-03, , <https://datatracker.ietf.org/doc/html/draft-lingga-i2nsf-analytics-interface-dm-03>.
[I-D.jeong-i2nsf-security-management-automation]
Jeong, J. P., Lingga, P., Jung-Soo, J., Lopez, D., and S. Hares, "Security Management Automation of Cloud-Based Security Services in I2NSF Framework", Work in Progress, Internet-Draft, draft-jeong-i2nsf-security-management-automation-07, , <https://datatracker.ietf.org/doc/html/draft-jeong-i2nsf-security-management-automation-07>.
[I-D.jeong-nmrg-ibn-network-management-automation]
Jeong, J. P., Ahn, Y., Kim, Y., and J. Jung-Soo, "Intent-Based Network Management Automation in 5G Networks", Work in Progress, Internet-Draft, draft-jeong-nmrg-ibn-network-management-automation-04, , <https://datatracker.ietf.org/doc/html/draft-jeong-nmrg-ibn-network-management-automation-04>.
[I-D.yang-i2nsf-security-policy-translation]
Jeong, J. P., Lingga, P., and J. Yang, "Guidelines for Security Policy Translation in Interface to Network Security Functions", Work in Progress, Internet-Draft, draft-yang-i2nsf-security-policy-translation-16, , <https://datatracker.ietf.org/doc/html/draft-yang-i2nsf-security-policy-translation-16>.
[YAML]
Ingerson, B., Evans, C., and O. Ben-Kiki, "Yet Another Markup Language (YAML) 1.0", Available: https://yaml.org/spec/history/2001-05-26.html, .
[TS-23.501]
"System Architecture for the 5G System (5GS)", Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144, .
[TS-28.312]
"Intent Driven Management Services for Mobile Networks", Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3554, .
[TR-28.812]
"Study on Scenarios for Intent Driven Management Services for Mobile Networks", Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3553, .
[TS-23.288]
"Architecture Enhancements for 5G System (5GS) to Support Network Data Analytics Services", Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3579, .
[TS-29.520]
"Network Data Analytics Services", Available: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3355, .
[ETSI-NFV]
"Network Functions Virtualisation (NFV); Architectural Framework", Available: https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf, .
[ETSI-NFV-Release-2]
"Network Functions Virtualisation (NFV) Release 2; Management and Orchestration; Architectural Framework Specification", Available: https://www.etsi.org/deliver/etsi_gs/nfv/001_099/006/02.01.01_60/gs_nfv006v020101p.pdf, .
[NFV-COIN]
Venancio, G., Turchetti, R., and E. Duarte Jr., "NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies", SBC Journal of Internet Services and Applications, Available: https://journals-sol.sbc.org.br/index.php/jisa/article/view/2342, .
[REST]
Fielding, R. and R. Taylor, "Principled Design of the Modern Web Architecture", ACM Transactions on Internet Technology, Vol. 2, Issue 2,, Available: https://dl.acm.org/doi/10.1145/514183.514185, .
[USENIX-ATC-Lumi]
Jacobs, A., Pfitscher, R., Ribeiro, R., Ferreira, R., Granville, L., Willinger, W., and S. Rao, "Hey, Lumi! Using Natural Language for Intent-Based Network Management", USENIX Annual Technical Conference, Available: https://www.usenix.org/conference/atc21/presentation/jacobs, .
[BERT]
Devlin, J., Chang, M., Lee, K., and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", NAACL-HLT Conference, Available: https://aclanthology.org/N19-1423.pdf, .
[Deep-Learning]
Goodfellow, I., Bengio, Y., and A. Courville, "Deep Learning", Publisher: The MIT Press, Available: https://www.deeplearningbook.org/, .
[AUTOSAR-SDV]
"AUTOSAR Adaptive Platform", Available: https://www.autosar.org/standards/adaptive-platform, .
[Eclipse-SDV]
"Eclipse Software Defined Vehicle Working Group Charter", Available: https://www.eclipse.org/org/workinggroups/sdv-charter.php, .
[COVESA]
"Connected Vehicle Systems Alliance", Available: https://covesa.global/, .
[Kubernetes]
"Kubernetes: Cloud Native Computing Platform", Available: https://kubernetes.io/, .
[Survey-IBN-CST-2023]
Leivadeas, A. and M. Falkner, "A Survey on Intent-Based Networking", Available: https://ieeexplore.ieee.org/document/9925251, .

Appendix A. Acknowledgments

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea Ministry of Science and ICT (MSIT) (No. RS-2024-00398199).

This work was supported in part by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea Ministry of Science and ICT (MSIT) (No. 2022-0-01015, Development of Candidate Element Technology for Intelligent 6G Mobile Core Network).

Appendix B. Contributors

This document is made by the group effort of OPWAWG, greatly benefiting from inputs and texts by Linda Dunbar (Futurewei), Yong-Geun Hong (Daejeon University), and Joo-Sang Youn (Dong-Eui University). The authors sincerely appreciate their contributions.

The following are coauthors of this document:

Mose Gu
Department of Computer Science & Engineering
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon
Gyeonggi-Do
16419
Republic of Korea
Juwon Hong
Department of Computer Science & Engineering
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon
Gyeonggi-Do
16419
Republic of Korea

Authors' Addresses

Jaehoon Paul Jeong (editor)
Department of Computer Science and Engineering
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon
Gyeonggi-Do
16419
Republic of Korea
Yiwen Shen
Department of Computer Science and Engineering
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon
Gyeonggi-Do
16419
Republic of Korea
Yoseop Ahn
Department of Computer Science and Engineering
Sungkyunkwan University
2066 Seobu-Ro, Jangan-Gu
Suwon
Gyeonggi-Do
16419
Republic of Korea
Younghan Kim
School of Electronic Engineering
Soongsil University
369, Sangdo-ro, Dongjak-gu
Seoul
06978
Republic of Korea
Elias P. Duarte Jr.
Department of Computer Science and Engineering
Federal University of Parana
Brazil