Internet-Draft | TLS/DTLS 1.3 IoT Profiles | June 2020 |
Tschofenig & Fossati | Expires 7 December 2020 | [Page] |
This document is a companion to RFC 7925 and defines TLS/DTLS 1.3 profiles for Internet of Things devices. It also updates RFC 7925 with regards to the X.509 certificate profile.¶
This note is to be removed before publishing as an RFC.¶
Source for this draft and an issue tracker can be found at https://github.com/thomas-fossati/draft-tls13-iot.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 7 December 2020.¶
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.¶
This document defines a profile of DTLS 1.3 [I-D.ietf-tls-dtls13] and TLS 1.3 [RFC8446] that offers communication security services for IoT applications and is reasonably implementable on many constrained devices. Profile thereby means that available configuration options and protocol extensions are utilized to best support the IoT environment.¶
For IoT profiles using TLS/DTLS 1.2 please consult [RFC7925]. This document re-uses the communication pattern defined in [RFC7925] and makes IoT-domain specific recommendations for version 1.3 (where necessary).¶
TLS 1.3 has been re-designed and several previously defined extensions are not applicable to the new version of TLS/DTLS anymore. This clean-up also simplifies this document. Furthermore, many outdated ciphersuites have been omitted from the TLS/DTLS 1.3 specification.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
In accordance with the recommendations in [RFC7925], a compliant implementation MUST implement TLS_AES_128_CCM_8_SHA256. It SHOULD implement TLS_CHACHA20_POLY1305_SHA256.¶
Pre-shared key based authentication is integrated into the main TLS/DTLS 1.3 specification and has been harmonized with session resumption.¶
A compliant implementation supporting authentication based on certificates and raw public keys MUST support digital signatures with ecdsa_secp256r1_sha256. A compliant implementation MUST support the key exchange with secp256r1 (NIST P-256) and SHOULD support key exchange with X25519.¶
A plain PSK-based TLS/DTLS client or server MUST implement the following extensions:¶
For TLS/DTLS clients and servers implementing raw public keys and/or certificates the guidance for mandatory-to-implement extensions described in Section 9.2 of [RFC8446] MUST be followed.¶
TLS 1.3 simplified the Alert protocol but the underlying challenge in an embedded context remains unchanged, namely what should an IoT device do when it encounters an error situation. The classical approach used in a desktop environment where the user is prompted is often not applicable with unattended devices. Hence, it is more important for a developer to find out from which error cases a device can recover from.¶
TLS 1.3 has built-in support for session resumption by utilizing PSK-based credentials established in an earlier exchange.¶
TLS 1.3 does not have support for compression.¶
TLS 1.3 allows the use of PFS with all ciphersuites since the support for it is negotiated independently.¶
The recommendation in Section 11 of [RFC7925] is applicable. In particular this document RECOMMENDED to use an initial timer value of 9 seconds with exponential back off up to no less then 60 seconds.¶
Question: DTLS 1.3 now offers per-record retransmission and therefore introduces much less congestion risk associated with spurious retransmissions. Hence, should we relax the 9s initial timeout?¶
The discussion in Section 12 of [RFC7925] is applicable with one exception: the ClientHello and the ServerHello messages in TLS 1.3 do not contain gmt_unix_time component anymore.¶
This specification mandates the implementation of the SNI extension. Where privacy requirements require it, the encrypted SNI extension [I-D.ietf-tls-esni] prevents an on-path attacker to determine the domain name the client is trying to connect to. Note, however, that the extension is still at an experimental state.¶
The Maximum Fragment Length Negotiation (MFL) extension has been superseded by the Record Size Limit (RSL) extension [RFC8449]. Implementations in compliance with this specification MUST implement the RSL extension and SHOULD use it to indicate their RAM limitations.¶
The recommendations in Section 19 of [RFC7925] are applicable.¶
The recommendations in Section 20 of [RFC7925] are applicable.¶
When clients and servers share a PSK, TLS/DTLS 1.3 allows clients to send data on the first flight ("early data"). This features reduces communication setup latency but requires application layer protocols to define its use with the 0-RTT data functionality.¶
For HTTP this functionality is described in [RFC8470]. This document specifies the application profile for CoAP, which follows the design of [RFC8470].¶
For a given request, the level of tolerance to replay risk is specific to the resource it operates upon (and therefore only known to the origin server). In general, if processing a request does not have state-changing side effects, the consequences of replay are not significant. The server can choose whether it will process early data before the TLS handshake completes.¶
It is RECOMMENDED that origin servers allow resources to explicitly configure whether early data is appropriate in requests.¶
This specification specifies the Early-Data option, which indicates that the request has been conveyed in early data and that a client understands the 4.25 (Too Early) status code. The semantic follows [RFC8470].¶
This section is intended for discussing updates to the certificate profile defined in [RFC7925]. Initial set of things to consider:¶
Question: should also we move the ASN.1 schema from Appendix B of [I-D.raza-ace-cbor-certificates] here and let it have it by reference?¶
The compression methods defined in [I-D.ietf-tls-certificate-compression] do not seem to deal effectively with [RFC7925] profiled certificates: zlib compresses the example cert by 9%, but other certificates and compression algorithms do in many cases increase the overall size. On the other hand, [I-D.raza-ace-cbor-certificates] provides a more efficient scheme, yielding to compression rates higher than 50% (see Section 3 of [I-D.mattsson-cose-cbor-cert-compress]).¶
Question: should we RECOMMEND CBOR compression? How is that negotiated?¶
This entire document is about security.¶
IANA is asked to add the Option defined in Figure 2 to the CoAP Option Numbers registry.¶
IANA is asked to add the Response Code defined in Figure 3 to the CoAP Response Code registry.¶