Internet-Draft NSH MD2 Context Headers January 2022
Wei, et al. Expires 16 July 2022 [Page]
Workgroup:
SFC
Internet-Draft:
draft-ietf-sfc-nsh-tlv-11
Published:
Intended Status:
Standards Track
Expires:
Authors:
Yuehua. Wei, Ed.
ZTE Corporation
U. Elzur
Intel
S. Majee
Individual contributor
C. Pignataro
Cisco
D. Eastlake
Futurewei Technologies

Network Service Header Metadata Type 2 Variable-Length Context Headers

Abstract

Service Function Chaining (SFC) uses the Network Service Header (NSH) (RFC 8300) to steer and provide context Metadata (MD) with each packet. Such Metadata can be of various Types including MD Type 2 variable length context headers. This document specifies several such context headers that can be used within a service function path.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 July 2022.

Table of Contents

1. Introduction

The Network Service Header (NSH) [RFC8300] is the Service Function Chaining (SFC) encapsulation that supports the SFC architecture [RFC7665]. As such, the NSH provides following key elements:

  1. Service Function Path (SFP) identification.
  2. Indication of location within a Service Function Path.
  3. Optional, per-packet metadata (fixed-length or variable-length).

[RFC8300] further defines two metadata formats (MD Types): 1 and 2. MD Type 1 defines the fixed-length, 16-octet long metadata, whereas MD Type 2 defines a variable-length context format for metadata. This document defines several common metadata context headers for use with NSH MD Type 2. These supplement the Subscriber Identity and Performance Policy MD Type 2 metadata context headers specified in [RFC8979].

This document does not address metadata usage, updating/chaining of metadata, or other SFP functions. Those topics are described in [RFC8300].

2. Conventions used in this document

2.1. Terminology

This document uses the terminology defined in the SFC Architecture [RFC7665] and the Network Service Header [RFC8300].

2.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. NSH MD Type 2 format

An NSH is composed of a 4-octet Base Header, a 4-octet Service Path Header and optional Context Headers. The Base Header identifies the MD-Type in use:

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Ver|O|U|    TTL    |   Length  |U|U|U|U|MD Type| Next Protocol |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: NSH Base Header

Please refer to NSH [RFC8300] for a detailed header description.

When the base header specifies MD Type = 0x2, zero or more Variable Length Context Headers MAY be added, immediately following the Service Path Header. Figure 2 below depicts the format of the Context Header as defined in Section 2.5.1 of [RFC8300].

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |          Metadata Class       |      Type     |U|    Length   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   Variable-Length Metadata                    |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: NSH Variable-Length Context Headers

4. NSH MD Type 2 Context Headers

[RFC8300] specifies Metadata Class 0x0000 as IETF Base NSH MD Class. In this document, metadata types are defined for the IETF Base NSH MD Class.

4.1. Forwarding Context

This metadata context carries a network forwarding context, used for segregation and forwarding scope. Forwarding context can take several forms depending on the network environment. For example, VXLAN/VXLAN-GPE VNID, VRF identification, or VLAN.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = TBA1  |U|  Length = 4 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x0 |             Reserved          |        VLAN ID        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Forwarding Context - 1(VLAN)
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = TBA1  |U|  Length = 4 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x1 |Resv   |     Service VLAN ID   |    Customer VLAN ID   |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Forwarding Context - 2(QinQ)
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = TBA1  |U|  Length = 4 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x2 |   Reserved    |              MPLS VPN Label           |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Forwarding Context - 3(MPLS VPN)
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = TBA1  |U|  Length = 4 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x3 | Resv  |            Virtual Network Identifier         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Forwarding Context - 4(VNI)
     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |    Metadata Class = 0x0000    |  Type = TBA1  |U|  Length = 8 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |CT=0x4 |             Reserved                                  |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                            Session ID                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Forwarding Context - 5(Session ID)

where:

  • Context Type (CT) is four bits-long field that defines the length and the interpretation of the Forwarding Context field. Please see the IANA Considerations in Section 7. This document defines these CT values:

    • 0x0 - 12 bits VLAN identifier. See Figure 3. Reserved bits MUST be sent as zero and ignored on receipt
    • 0x1 - 24 bits double tagging identifiers. A service VLAN tag followed by a customer VLAN tag [IEEE.802.1Q_2018]. The two VLAN IDs are concatenated and appear in the same order that they appeared in the payload. See Figure 4. Reserved bits MUST be sent as zero and ignored on receipt
    • 0x2 - 20 bits MPLS VPN label. See Figure 5. Reserved bits MUST be sent as zero and ignored on receipt
    • 0x3 - 24 bits virtual network identifier (VNI). See Figure 6. Reserved bits MUST be sent as zero and ignored on receipt
    • 0x4 - 32 bits Session ID ([RFC3931]). This is called Key in GRE [RFC2890]. See Figure 7.

4.2. Tenant Identifier

Tenant identification is often used for segregation within a multi-tenant environment. Orchestration system-generated tenant IDs are an example of such data. This context header carries the value of the Tenant identifier.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Metadata Class = 0x0000    |  Type = TBA2  |U| Length = var|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                         Tenant ID                             ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Tenant Identifier List

The fields are described as follows:

  • Length: Indicates the length of the Tenant ID in octets (see Section 2.5.1 of [RFC8300]).
  • Tenant ID: Represents an opaque value pointing to Orchestration system-generated tenant identifier. The structure and semantics of this field are deployment specific.

4.3. Ingress Network Node Information

This context header carries a Node ID of the ingress network node.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Metadata Class = 0x0000    |  Type = TBA3  |U| Length = var|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                        Node ID                                ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: Ingress Network Node ID

The fields are described as follows:

  • Length: Indicates the length of the Node ID in octets (see Section 2.5.1 of [RFC8300]).
  • Node ID: Represents an opaque value of the ingress network node ID. The structure and semantics of this field are deployment specific. For example, Node ID may be a 4 octets IPv4 address Node ID, or a 16 octets IPv6 address Node ID, or a 6 octets MAC address, or 8 octets MAC address (EUI-64), etc.

4.4. Ingress Network Source Interface

This context identifies the ingress interface of the ingress network node.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Metadata Class = 0x0000    |  Type = TBA4  |U| Length = var|
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                     Source Interface                          ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Ingress Network Source Interface

The fields are described as follows:

  • Length: Indicates the length of the Source Interface in octets (see Section 2.5.1 of [RFC8300]).
  • Source Interface: Represents an opaque value of identifier of the ingress interface of the ingress network node.

4.5. Flow ID

Flow ID provides a field in the NSH MD Type 2 to label packets belonging to the same flow. Absence of this field, or a value of zero denotes that packets have not been labeled.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Metadata Class = 0x0000    |  Type = TBA5  |U| Length = 4  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Flow ID                                   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: Flow ID

The fields are described as follows:

  • Length: Indicates the length of the Flow ID in octets (see Section 2.5.1 of [RFC8300]). [RFC8200] defined IPv6 Flow Label as a 20-bit long unsigned integer. Also, [RFC6790], which defined the use of an entropy label in the MPLS network, is 20-bit long.
  • Flow ID: Represents an opaque value of the Flow ID. The Flow ID is right justified (appears in the least significant bits of the Flow ID word) and is padded on the left with bits which MUST be sent as zero and ignored on receipt.

4.6. Source and/or Destination Groups

Intent-based systems can use this data to express the logical grouping of source and/or destination objects. [OpenStack] and [OpenDaylight] provide examples of such a system. Each is expressed as a 32-bit opaque object.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Metadata Class = 0x0000    |  Type = TBA6  |U|  Length=8   |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Source Group                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Dest Group                             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 12: Source/Dest Groups

4.7. Policy Identifier

Traffic handling policies are often referred to by a system-generated identifier, which is then used by the devices to look up the policy's content locally. For example, this identifier could be an index to an array, a lookup key, a database Id. The identifier allows enforcement agents or services to look up the content of their part of the policy.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Metadata Class = 0x0000    |  Type = TBA7  |U|  Length=var |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                     Policy ID                                 ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 13: Policy ID

The fields are described as follows:

  • Length: Indicates the length of the Policy ID in octets (see Section 2.5.1 of [RFC8300]).
  • Policy ID: Represents an opaque value of the Policy ID.

This policy identifier is a general policy ID, essentially a key to allow Service Functions to know which policies to apply to packets. Those policies generally will not have much to do with performance, but rather with what specific treatment to apply. It may for example select a URL filter data set for a URL filter, or select a video transcoding policy in a transcoding SF. The Performance Policy Identifier in [RFC8979] is described there as having very specific use, and for example says that fully controlled SFPs would not use it. The Policy ID in this document is for cases not covered by [RFC8979].

5. Security Considerations

A misbehaving node from within the SFC-enabled domain may alter the content of the Context Headers, which may lead to service disruption. Such an attack is not unique to the Context Headers defined in this document. Measures discussed in Section 8 of [RFC8300] describes the general security considerations for protecting NSH. [I-D.ietf-sfc-nsh-integrity] specifies methods of protecting the integrity of the NSH metadata. If the NSH includes the MAC Context Header, the authentication of the packet MUST be verified before using any data. If the verification fails, the receiver MUST stop processing the variable length context headers and notify an operator.

6. Acknowledgments

The authors would like to thank Paul Quinn, Behcet Sarikaya, Dirk von Hugo, Mohamed Boucadair, Gregory Mirsky, and Joel Halpern for providing invaluable concepts and content for this document.

7. IANA Considerations

7.1. MD Type 2 Context Types

IANA is requested to assign the following types (Table 1) from the "NSH IETF- Assigned Optional Variable-Length Metadata Types" registry available at [IANA-NSH-MD2].These Metadata Types only apply when the Metadata Class is 0x000 (IETF Base NSH MD Class)

Table 1: Type Values
Value Description Reference
TBA1 Forwarding Context This document
TBA2 Tenant Identifier This document
TBA3 Ingress Network NodeID This document
TBA4 Ingress Network Interface This document
TBA5 Flow ID This document
TBA6 Source and/or Destination Groups This document
TBA7 Policy Identifier This document

7.2. Forwarding Context Types

IANA is requested to create a new sub-registry for "Forwarding Context" context types at [IANA-NSH-MD2] as follows:

The Registration Policy is IETF Review

Table 2: Forwarding Context Types
Value Forwarding Context Header Types Reference
0x0 12-bit VLAN identifier This document
0x1 24-bit double tagging identifiers This document
0x2 20-bit MPLS VPN label This document
0x3 24-bit virtual network identifier (VNI) This document
0x4 32-bit Session ID This document
0x5-0xE Unassigned
0xF Reserved This document

8. References

8.1. Normative References

[I-D.ietf-sfc-nsh-integrity]
Boucadair, M., Reddy, T., and D. Wing, "Integrity Protection for the Network Service Header (NSH) and Encryption of Sensitive Context Headers", Work in Progress, Internet-Draft, draft-ietf-sfc-nsh-integrity-09, , <https://www.ietf.org/archive/id/draft-ietf-sfc-nsh-integrity-09.txt>.
[IANA-NSH-MD2]
IANA, "NSH IETF-Assigned Optional Variable-Length Metadata Types", <https://www.iana.org/assignments/nsh/nsh.xhtml#optional-variable-length-metadata-types>.
[IEEE.802.1Q_2018]
IEEE, "IEEE Standard for Local and Metropolitan Area Networks--Bridges and Bridged Networks", , <http://ieeexplore.ieee.org/servlet/opac?punumber=8403925>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC3931]
Lau, J., Ed., Townsley, M., Ed., and I. Goyret, Ed., "Layer Two Tunneling Protocol - Version 3 (L2TPv3)", RFC 3931, DOI 10.17487/RFC3931, , <https://www.rfc-editor.org/info/rfc3931>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
[RFC8300]
Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed., "Network Service Header (NSH)", RFC 8300, DOI 10.17487/RFC8300, , <https://www.rfc-editor.org/info/rfc8300>.

8.2. Informative References

[OpenDaylight]
OpenDaylight, "Group Based Policy", , <https://docs.opendaylight.org/en/stable-fluorine/user-guide/group-based-policy-user-guide.html?highlight=group%20policy#>.
[OpenStack]
OpenStack, "Group Based Policy", , <https://wiki.openstack.org/wiki/GroupBasedPolicy>.
[RFC2890]
Dommety, G., "Key and Sequence Number Extensions to GRE", RFC 2890, DOI 10.17487/RFC2890, , <https://www.rfc-editor.org/info/rfc2890>.
[RFC6790]
Kompella, K., Drake, J., Amante, S., Henderickx, W., and L. Yong, "The Use of Entropy Labels in MPLS Forwarding", RFC 6790, DOI 10.17487/RFC6790, , <https://www.rfc-editor.org/info/rfc6790>.
[RFC7665]
Halpern, J., Ed. and C. Pignataro, Ed., "Service Function Chaining (SFC) Architecture", RFC 7665, DOI 10.17487/RFC7665, , <https://www.rfc-editor.org/info/rfc7665>.
[RFC8200]
Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", STD 86, RFC 8200, DOI 10.17487/RFC8200, , <https://www.rfc-editor.org/info/rfc8200>.
[RFC8979]
Sarikaya, B., von Hugo, D., and M. Boucadair, "Subscriber and Performance Policy Identifier Context Headers in the Network Service Header (NSH)", RFC 8979, DOI 10.17487/RFC8979, , <https://www.rfc-editor.org/info/rfc8979>.

Authors' Addresses

Yuehua Wei (editor)
ZTE Corporation
No.50, Software Avenue
Nanjing
210012
China
Uri Elzur
Intel
Sumandra Majee
Individual contributor
Carlos Pignataro
Cisco
Donald E. Eastlake
Futurewei Technologies