Internet-Draft Relay User Equipment Profile July 2021
Rosen Expires 30 January 2022 [Page]
Workgroup:
rum
Internet-Draft:
draft-ietf-rum-rue-06
Published:
Intended Status:
Standards Track
Expires:
Author:
B. Rosen

Interoperability Profile for Relay User Equipment

Abstract

Video Relay Service (VRS) is a term used to describe a method by which a hearing persons can communicate with deaf/Hard of Hearing user using an interpreter ("Communications Assistant") connected via a videophone to the deaf/HoH user and an audio telephone call to the hearing user. The CA interprets using sign language on the videophone link and voice on the telephone link. Often the interpreters may be supplied by a company or agency termed a "provider" in this document. The provider also provides a video service that allows users to connect video devices to their service, and subsequently to CAs and other deaf/HoH users. It is desirable that the videophones used by the deaf/HoH/H-I user conform to a standard so that any device may be used with any provider and that video calls direct between deaf/HoH users work. This document describes the interface between a videophone and a provider.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 January 2022.

Table of Contents

1. Introduction

Video Relay Service (VRS) is a form of Telecommunications Relay Service (TRS) that enables persons with hearing disabilities who use sign language, such as American Sign Language (ASL), to communicate with voice telephone users through video equipment. These services also enable communication between such individuals directly in suitable modalities, including any combination of sign language via video, real-time text (RTT), and speech.

This Interoperability Profile for Relay User Equipment (RUE) is a profile of the Session Initiation Protocol (SIP) and related media protocols that enables end-user equipment registration and calling for VRS calls. It specifies the minimal set of call flows, Internet Engineering Task Force (IETF) and ITU-T standards that must be supported, provides guidance where the standards leave multiple implementation options, and specifies minimal and extended capabilities for RUE calls.

Both deaf/HoH to provider (interpreted) and direct deaf/HoH to deaf/HoH calls are supported on this interface. While there are some accommodations in this document to maximize backwards compatibility with other devices and services that are used to provide VRS service, backwards compatibility is not a requirement, and some interwork may be required to allow direct video calls to older devices. This document only describes the interface between the device and the provider, and not any other interface the provider may have.

2. Terminology

Communication Assistant (CA): A sign-language interpreter working for a VRS Provider, providing functionally equivalent phone service.

Communication modality (modality): A specific form of communication that may be employed by two users, e.g., English voice, Spanish voice, American Sign Language, English lip-reading, or French real-time-text. Here, one communication modality is assumed to encompass both the language and the way that language is exchanged. For example, English voice and French voice are two different communication modalities.

Default video relay service: The video relay service operated by a subscriber's default VRS provider.

Default video relay service Provider (Default Provider): The VRS provider that registers, and assigns a telephone number to a specific subscriber, and by default provides the VRS for incoming voice calls to the user. The default Provider also by default provides VRS for outgoing relay calls. The user can have more than one telephone number and each has a default provider.

Outbound Dial-around call: A relay call where the subscriber specifies the use of a VRS provider other than the default VRS provider. This can be accomplished by the user dialing a "front-door" number for a VRS provider and signing or texting a phone number to call ("two-stage"). Alternatively, this can be accomplished by the user's RUE software instructing the server of its default VRS provider to automatically route the call through the alternate Provider to the desired public switched telephone network (PSTN) directory number ("one-stage"). Dial-around is per-call -- for any call, a user can use the default VRS provider or any dial-around VRS provider.

Full Intra Request (FIR): A request to a video media sender, requiring that media sender to send a Decoder Refresh Point at the earliest opportunity. FIR is sometimes known as "instantaneous decoder refresh request", "video fast update request", or "fast update request". Point-to-Point Call (P2P Call): A call between two RUEs, without including a CA.

Relay call: A call that allows persons with hearing or speech disabilities to use a RUE to talk to users of traditional voice services with the aid of a communication assistant (CA) to relay the communication. Please refer to FCC-VRS-GUIDE.

Relay service (RS): A service that allow a registered subscriber to use a RUE to make and receive relay calls, point-to-point calls, and relay-to-relay calls. The functions provided by the relay service include the provision of media links supporting the communication modalities used by the caller and callee, and user registration and validation, authentication, authorization, automatic call distributor (ACD) platform functions, routing (including emergency call routing), call setup, mapping, call features (such as call forwarding and video mail), and assignment of CAs to relay calls.

Relay service Provider (Provider): An organization that operates a relay service. A subscriber selects a relay service Provider to assign and register a telephone number for their use, to register with for receipt of incoming calls, and to provide the default service for outgoing calls.

Relay user: Please refer to "subscriber".

Relay user E.164 Number (user E.164): The telephone number (in ITU-T E.164 format) assigned to the user.

Relay user equipment (RUE): A SIP user agent (UA) enhanced with extra features to support a subscriber in requesting, receiving and using relay calls. A RUE may take many forms, including a stand-alone device; an application running on a general-purpose computing device such as a laptop, tablet or smart phone; or proprietary equipment connected to a server that provides the RUE interface.

RUE Interface: the interfaces described in this document between a RUE and a VRS provider who supports it

Sign language: A language that uses hand gestures and body language to convey meaning including, but not limited to, American Sign Language (ASL).

Subscriber: An individual who has registered with a Provider and who obtains service by using relay user equipment. This is the traditional telecom term for an end-user customer, which in our case is a relay user. A user may be a subscriber to more than one VRS provider.

Video relay service (VRS): A relay service for people with hearing or speech disabilities who use sign language to communicate using video equipment (video RUE) with other people in real time. The video link allows the CA to view and interpret the subscriber's signed conversation and relay the conversation back and forth with the other party.

3. Requirements Language

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]

4. General Requirements

All HTTP/HTTPS connections specified throughout this document MUST use HTTPS. Both HTTPS and all SIP connections MUST use TLS conforming to at least [RFC7525] and must support [RFC8446]

All text data payloads not otherwise constrained by a specification in another standards document MUST be encoded as Unicode UTF/8.

Implementations MUST support IPv4 and IPv6. Dual stack support is NOT required and provider implementations MAY support separate interfaces for IPv4 and IPv6 by having more than one server in the appropriate SRV record where there is either an A or AAAA record in each server DNS record but not both. The same version of IP MUST be used for both signaling and media of a call.

5. SIP Signaling

Implementations of the RUE Interface MUST conform to the following core SIP standards [RFC3261] (Base SIP) [RFC3263] (Locating SIP Servers), [RFC3264] (Offer/Answer), [RFC3840] (User Agent Capabilities), [RFC5626] (Outbound), [RFC8866] (Session Description Protocol), [RFC3323] (Privacy), [RFC3605] (RTCP Attribute in SDP), [RFC6665] (SIP Events), [RFC3311] (UPDATE Method), [RFC5393] (Loop-Fix), [RFC5658] (Record Route fix), [RFC5954] (ABNF fix), [RFC3960] (Early Media), and [RFC6442] (Geolocation Header).

In the above documents the RUE device conforms to the requirements of a SIP user Agent, and the provider conforms to the requirements of Registrar and Proxy Server where the document specifies different behavior for different roles. The only requirement on providers for RFC6655 (Events) is support for the Message Waiting Indicator (See Section Section 8), which is optional and providers not supporting voicemail need not support RFC6665.

In addition, implementation MUST conform to [RFC3327] (Path), [RFC5245] (ICE), [RFC3326] (Reason header), [RFC3515] (REFER Method), [RFC3891] (Replaces Header), [RFC3892] (Referred-By).

Implementations MUST include a "User-Agent" header field uniquely identifying the RUE application, platform, and version in all SIP requests, and MUST include a "Server" header field with the same content in SIP responses.

Implementations intended to support mobile platforms MUST support [RFC8599] and MUST use it as at least one way to support waking up the client from background state.

5.1. Registration

The RUE MUST register with a SIP registrar, following [RFC3261] and [RFC5626] at a provider it has an account with. If the configuration (see Section 9.2) contains multiple "outbound-proxies", then the RUE MUST use them as specified in [RFC5626] to establish multiple flows.

The request-URI for the REGISTER request MUST contain the "provider-domain" from the configuration. The To-URI and From-URI MUST be identical URIs, formatted as specified in Section 13, using the "phone-number" and "provider-domain" from the configuration.

The RUE determines the URI to resolve by initially determining if an outbound proxy is configured. If it is, the URI will be that of the outbound proxy. If no outbound proxy is configured, the URI will be the Request-URI from the REGISTER request. The RUE extracts the domain from that URI and consults the DNS record for that domain. The DNS entry MUST contain NAPTR records conforming to RFC3263. One of those NAPTR records MUST specify TLS as the preferred transport for SIP. For example, a DNS NAPTR query for "sip: p1.red.example.netv" could return:

      IN NAPTR 50  50 "s" "SIPS+D2T" "" _sips._tcp.p1.red.example.net
      IN NAPTR 90  50 "s" "SIP+D2T"  "" _sip._tcp.p1.red.example.net

If the RUE receives a 439 (First Hop Lacks Outbound Support) response to a REGISTER request, it MUST re-attempt registration without using the outbound mechanism.

The registrar MAY authenticate using SIP digest authentication. The credentials to be used (username and password) MUST be supplied within the credentials section of the configuration and identified by the realm the registrar uses in a digest challenge. This username/password combination SHOULD NOT be the same as that used for other purposes, such as retrieving the RUE configuration or logging into the Provider's customer service portal. [RFC8760] MUST be supported by all implementations and SHA-512 digest algorithms MUST be supported.

If the registration request fails with an indication that credentials from the configuration are invalid, then the RUE SHOULD retrieve a fresh version of the configuration. If credentials from a freshly retrieved configuration are found to be invalid, then the RUE MUST cease attempts to register and SHOULD inform the RUE User of the problem.

Support for multiple simultaneous registrations with multiple providers by the RUE is OPTIONAL for the RUE (and providers do not need any support for this option).

Multiple simultaneous RUE SIP registrations from different RUE devices with the same SIP URI SHOULD be permitted by the Provider. The Provider MAY limit the total number of simultaneous registrations. When a new registration request is received that results in exceeding the limit on simultaneous registrations, the Provider MAY then prematurely terminate another registration; however, it SHOULD NOT do this if it would disconnect an active call.

If a Provider prematurely terminates a registration to reduce the total number of concurrent registrations with the same URI, it SHOULD take some action to prevent the affected RUE from automatically re-registering and re-triggering the condition.

5.2. Session Establishment

5.2.1. Normal Call Origination

After initial SIP registration, the RUE adheres to SIP [RFC3261] basic call flows, as documented in [RFC3665].

A RUE device MUST route all outbound calls through an outbound proxy if configured.

The SIP URIs in the To field and the Request-URI MUST be formatted as specified in subsection Section 5.4 using the destination phone number, or as SIP URIs, as provided in the configuration (Section 9.2. The domain field of the URIs SHOULD be the "provider-domain" from the configuration (e.g., sip:+13115552368@red.example.com;user=phone) except that an anonymous call would not use the provider domain.

Anonymous calls MUST be supported by all implementations. An anonymous call is signaled per [RFC3323].

The From-URI MUST be formatted as specified in Section 5.4, using the phone-number and "provider-domain" from the configuration. It SHOULD also contain the display-name from the configuration when present. (Please refer to Section 9.2.)

Negotiated media MUST follow the guidelines specified in Section 6 of this document.

To allow time to timeout an unanswered call and direct it to a videomail server, the User Agent Client MUST NOT impose a time limit less than the default SIP Invite transaction timeout of 3 minutes.

5.2.2. Dial-Around Origination

Providers and RUE devices MUST support both One-Stage and Two-Stage dial-around

Outbound dial-around calls allow a RUE user to select any Provider to provide interpreting services for any call. "Two-stage" dial-around calls involve the RUE calling a telephone number that reaches the dial-around Provider and using signing or DTMF to provide the called party telephone number. In two-stage dial-around, the To URI is the front door URI (see Section Section 9.2 of the dial-around Provider and the domain of the URI is the Provider domain from the configuration. The provider list service (Section 9.1) can be used to by the RUE to obtain a list of providers and then the configuration service (xref target="providerConfig"/>) without credentials can be used to find the front door URI for each of these providers.

One-stage dial-around is a method where the called party telephone number is provided in the To URI and the Request-URI, using the domain of the dial-around Provider.

For one-stage dial-around, the RUE MUST follow the procedures in Section 5.2.1 with the following exception: the domain part of the SIP URIs in the To field and the Request-URI MUST be the domain of the dial-around Provider, discovered according to Section 9.1.

The following is a partial example of a one-stage dial-around call from VRS user +1-555-222-0001 hosted by red.example.com to a hearing user +1-555-123-4567 using dial-around to green.example.com for the relay service. Only important details of the messages are shown and many header fields have been omitted:


  ,-+-.        ,----+----.    ,-----+-----.
  |RUE|        |Default  |    |Dial-Around|
  |   |        |Provider |    | Provider  |
  `-+-'        `----+----'    `-----+-----'
    |               |               |
    | [1] INVITE    |               |
    |-------------->| [2] INVITE    |
    |               |-------------->|

  Message Details:

  [1] INVITE Rue -> Default Provider

  INVITE sip:+15551234567@green.example.net;user=phone SIP/2.0
  To: <sip:+15551234567@green.example.net;user=phone>
  From: "Bob Smith" <sip:+18135551212@red.example.net;user=phone>


  [2] INVITE Default Provider -> Dial-Around Provider

  INVITE sip:+15551234567@green.example.net;user=phone SIP/2.0
  To: <sip:+15551234567@green.example.net;user=phone>
  From: "Bob Smith" sip:+18135551212@red.example.net;user=phone
  P-Asserted-Identity: sip:+18135551212@red.example.net
Figure 1: One Stage Dial-Around

5.2.3. RUE Contact Information

To identify the owner of a RUE, the initial INVITE for a call from a RUE, or the 200 OK accepting a call by a RUE, identifies the owner by sending a Call-Info header with a purpose parameter of "rue-owner". The URI MAY be an HTTPS URI or Content-Indirect URL. The latter is defined by [RFC2392] to locate message body parts. This URI type is present in a SIP message to convey the RUE ownership information as a MIME body. The form of the RUE ownership information is a jCard [RFC7095]. Please refer to [RFC6442] for an example of using Content-Indirect URLs in SIP messages. Note that use of the Content-Indirect URL usually implies multiple message bodies ("mime/multipart").

5.2.4. Incoming Calls

The RUE MUST only accept inbound calls sent to it by a proxy mentioned in the configuration.

If Multiple simultaneous RUE SIP registrations from different RUE devices with the same SIP URI exist, the Provider MUST parallel fork the call to all registered RUEs so that they ring at the same time. The first RUE to reply with a 200 OK answers the call and the Provider MUST CANCEL other call branches.

5.2.5. Emergency Calls

Implementations MUST conform to [RFC6881] for handling of emergency calls, except that if the device is unable to determine its own location, it MAY send the emergency call without a Geolocation header and without a Route header (since it would be unable to query the LoST server for a route per RFC6881). If an emergency call arrives at the provider without a Geolocation header, the provider MUST supply location by adding the Geolocation header, and MUST supply the route by querying the LoST server with that location.

If the emergency call is to be handled using existing country specific procedures, the Provider is responsible for modifying the INVITE to conform to the country-specific requirements. In this case, location MAY be extracted from the RFC6881 conformant INVITE and used to propagate it to the appropriate country-specific entities. Because the RUE may have a more accurate and timely location of the device than the a manual entry location for nomadic RUE devices, but country-specific procedures require the location to be pre-loaded in some entity prior to placing an emergency call, implementations of a RUE device MAY send a Geolocation header containing its location in the REGISTER request if the configuration specifies it. That information MAY be used to populate the location to appropriate country-specific entities. Re-registration SHOULD be used to update the location, so long as the rate of re-registration is limited if the device is moving.

Implementations MUST implement Additional Data, [RFC7852]. RUE devices MUST implement Data Provider, Device Implementation and Owner/Subscriber Information blocks.

5.3. Mid Call Signaling

Implementations MUST support re-INVITE to renegotiate media session parameters (among other uses). Per Section 6.1, implementations MUST, be able to support an INFO request for full frame refresh for devices that do not support RTCP mechanisms (please refer to Section 6.8). Implementations MUST support an in-dialog REFER ([RFC3515] updated by [RFC7647] and including support for norefersub per [RFC4488]) with the Replaces header [RFC3891] to enable call transfer.

5.4. URI Representation of Phone Numbers

SIP URIs constructed from non-URI sources (dial strings) and sent to SIP proxies by the RUE MUST be represented as follows, depending on whether they can be represented as an E.164 number. In this section "expressed as an E.164 number" includes numbers such as toll free numbers that are not actually E.164 numbers, but have the same format.

A dial string that can be expressed as an E.164 phone number MUST be represented as a SIP URI with a URI ";user=phone" tag. The user part of the URI MUST be in conformance with 'global-number' defined in [RFC3966]. The user part MUST NOT contain any 'visual-separator' characters.

Dial strings that cannot be expressed as E.164 numbers MUST be represented as dialstring URIs, as specified by [RFC4967], e.g., sip:411@red.example.net;user=dialstring.

The domain part of Relay Service URIs and User Address of Records (AoR) MUST resolve (per [RFC3263]) to globally routable IPv4 and/or IPv6 addresses.

5.5. Transport

Implementations MUST conform to [RFC8835] except that that this specification does not use the WebRTC data channel. See Section Section 6.2 for how RUE supports real time text without the data channel.

Implementations MUST support SIP outbound [RFC5626] (please also refer to Section 5.1).

6. Media

This specification adopts the media specifications for WebRTC ([RFC8825]). Where WebRTC defines how interactive media communications may be established using a browser as a client, this specification assumes a normal SIP call. The RTP, RTCP, SDP and specific media requirements specified for WebRTC are adopted for this document. The RUE is a WebRTC non-browser" endpoint, except as noted expressly below.

The following sections specify the WebRTC documents to which conformance is required. "Mandatory to Implement" means a conforming implementation must implement the specified capability. It does not mean that the capability must be used in every session. For example, OPUS is a mandatory to implement audio codec, and all conforming implementations must support OPUS. However, implementation presenting a call across the RUE Interface where the call originates in the Public Switched Telephone Network, or an older, non-RUE-compatible device, which only offers G.711 audio, does not need to include the OPUS codec in the offer, since it cannot be used with that call.

6.1. SRTP and SRTCP

Implementations MUST support [RFC8834] except that MediaStreamTracks are not used. Implementations MUST conform to Section 6.4 of [RFC8827].

6.2. Text-Based Communication

Implementations MUST support real-time text ([RFC4102] and [RFC4103]) via T.140 media. One original and two redundant generations MUST be transmitted and supported, with a 300 ms transmission interval. Note that this is not how real time text is transmitted in WebRTC and some form of transcoder would be required to interwork real time text in the data channel of WebRTC to RFC4103 real time text.

6.3. Video

Implementations MUST conform to [RFC7742] with the exception that, since backwards compatibility is desirable and older devices do not support VP8, that only H.264, as specified in [RFC7742] is Mandatory to Implement and VP8 support is OPTIONAL at both the device and providers.

6.4. Audio

Implementations MUST conform to [RFC7874].

6.5. DTMF Digits

Implementations MUST support the "audio/telephone-event" [RFC4733] media type. They MUST support conveying event codes 0 through 11 (DTMF digits "0"-"9", "*","#") defined in Table 7 of [RFC4733]. Handling of other tones is OPTIONAL.

6.6. Session Description Protocol

The SDP offers and answers MUST conform to the SDP rules in [RFC8829] except that the RUE Interface uses SIP transport for SDP and the SDP for real time text MUST specify [RFC4103].

6.7. Privacy

The RUE MUST be able to control privacy of the user by implementing a one-way mute of audio and or video, without signaling, locally, but MUST maintain any NAT bindings by periodically sending media packets on all active media sessions containing silence/comfort noise/black screen/etc. per [RFC6263].

6.8. Negative Acknowledgment, Packet Loss Indicator, and Full Intraframe Request Features

NACK SHOULD be used when negotiated and conditions warrant its use. Signaling picture losses as Packet Loss Indicator (PLI) SHOULD be preferred, as described in [RFC5104].

FIR SHOULD be used only in situations where not sending a decoder refresh point would render the video unusable for the users, as per RFC5104 subsection 4.3.1.2.

For backwards compatibility with calling devices that do not support the foregoing methods, implementations MUST implement SIP INFO messages to send and receive XML encoded Picture Fast Update messages according to [RFC5168].

7. Contacts

7.1. CardDAV Login and Synchronization

Support of CardDAV by Providers is OPTIONAL.

The RUE MUST and Providers MAY be able to synchronize the user's contact directory between the RUE endpoint and one maintained by the user's VRS provider using CardDAV ([RFC6352] and [RFC6764]).

The configuration MAY supply a username and domain identifying a CardDAV server and address book for this account.

To access the CardDAV server and address book, the RUE MUST follow Section 6 of RFC6764, using the chosen username and domain in place of an email address. If the request triggers a challenge for digest authentication credentials, the RUE MUST attempt to continue using matching "credentials" from the configuration. If no matching credentials are configured, the RUE MUST use the SIP credentials from the configuration. If the SIP credentials fail, the RUE MUST query the user.

Synchronization using CardDAV MUST be a two-way synchronization service, with proper handling of asynchronous adds, changes, and deletes at either end of the transport channel.

7.2. Contacts Import/Export Service

Implementations MUST be able to export/import the list of contacts in jCard [RFC7095] json format.

The RUE accesses this service via the "contacts" URI in the configuration. The URL MUST resolve to identify a web server resource that imports/exports contact lists for authorized users.

The RUE stores/retrieves the contact list (address book) by issuing an HTTPS POST or GET request. If the request triggers a challenge for digest authentication credentials, the RUE MUST attempt to continue using matching "credentials" from the configuration. If no credentials are configured, the RUE MUST query the user.

8. Mail Waiting Indicator (MWI)

Providers MUST support MWI if they support video mail. RUE devices MUST support MWI.

Implementations MUST support subscriptions to "message-summary" events [RFC3842] to the URI specified in the configuration.

In notification bodies, videomail messages SHOULD be reported using "message-context-class multimedia-message" defined in [RFC3458].

9. Provisioning and Provider Selection

To simplify how users interact with RUE devices, the RUE interface separates provisioning into two parts. One provides a directory of providers so that a user interface that allows easy provider selection either for registering or for dial-around. The other provides configuration data for the device for each provider.

9.1. RUE Provider Selection

To allow the user to select a relay service, the RUE MAY at any time obtain (typically on startup) a list of Providers that provide service in a country. IANA has established a registry that contains a two letter country code and a URI. The URI, when used with the following interface, returns a list of provider names for a country code suitable for display, with a corresponding a URI to obtain information about that provider. The provider URI is the entry point of a simple web service that returns contact information for that provider.

Each country that supports video relay service using this specification MAY support the provider list. This document does not specify who maintains the list. Some possibilities are a regulator or entity designated by a regulator, an agreement among providers to provide the list, or a user group.

The web service also has a simple version mechanism that returns a list of versions of the web service it supports. This document describes version 1.0. Versions are described as a major version, the period "." and a minor version, where major and minor versions are integers. A backwards compatible change within a major version MAY increment only the minor version number. A non-backwards compatible change MUST increment the major version number. To achieve backwards compatibility, implementations MUST ignore any object members they do not implement and minor version definitions SHALL only add objects, non-required members of existing objects, and non-mandatory-to use functions and SHALL NOT delete any objects, members of objects or functions. This means an implementation of a specific major version and minor version is backwards compatible with all minor versions of the major version. The versions mechanism returns an array of supported versions, one for each major version supported, with the minor version listed being the highest supported minor version.

The V1 provider list is a json object consisting of an array where each entry describes one Provider. Each entry consists of the following items:

  • name: This parameter contains the text label identifying the Provider and is meant to be displayed to the human VRS user.
  • domain: The domain parameter is used for configuration purposes by the RUE (as discussed in Section 9.2)

The VRS user interacts with the RUE to select from the Provider list one or more Providers with whom the user has already established an account, wishes to establish an account, or wishes to use the provider for a one stage dial around.

  {
    "providers": [
      {
        "name": "Red",
        "domain": "red.example.net",
      },
      {
        "name": "Green",
        "domain": "green.example.net",
      },
      {
        "name": "Blue",
        "domain": "blue.example.net"
      }
    ]
  }
Figure 2: Example of a Provider list JSON object
  {
    "versions": [
      {
        "major": 1,
        "minor": 6,
      },
      {
        "major": 2,
        "minor": 13,
      },
      {
        "major": 3,
        "minor": 2
      }
    ]
  }
Figure 3: Example of a Version JSON object

9.2. RUE Configuration Service

A RUE device may retrieve a provider configuration the using a simple HTTPs web service. There are two entry points. One is used without user credentials, the response includes configuration data for new user sign up and dial around. The other uses the userid/password to authenticate to the interface and returns configuration data for the RUE.

An optional parameter may be provided to the interface which is an API Key. The implementation MAY have an API Key obtained from the provider and specific to the implementation. The method the API Key is obtained is not specified in this document. The provider MAY refuse to provide service to an implementation presenting an API Key it does not recognize.

A required parameter which contains an instance identifier. This parameter MUST be the same value each time this instance (same implementation on same device) queries the interface. This may be used by the provider, for example, to associate a location with the instance for emergency calls.

The data returned is a json object consisting of an array of key/value configuration parameters to be used by the RUE.

The configuration API also provides the same version mechanism as specified above in Section 9.1. The version of the configuration service MAY be different than the version of the provider list service.

The configuration data payload includes the following data items. Items not noted as (OPTIONAL) are REQUIRED. If other unexpected items are found, they MUST be ignored.

9.2.1. Provider Configuration

  • signup: (OPTIONAL) an array of json objects consisting of:

    • language: entry from the IANA language subtag registry
    • uri: a URI to the website for creating a new account in the supported language. The new user signup URI may only initiate creation of a new account. Various vetting, approval and other processes may be needed, which could take time, before the account is established. The result of creating a new account would be a username and password, which would be manually entered into the RUE device to allow connection to the Provider.
  • dialAround: an array of json objects consisting of:

    • language: entry from the IANA language subtag registry
    • frontDoor: a URI to a queue of interpreters supporting the specified language for a two stage dial-around
    • oneStage: a URI that can be used with a one-stage dial-around Section 5.2.2 using an interpreter supporting the specified language
  • helpDesk: (OPTIONAL) an array of json objets consisting of:

    • language: entry from the IANA language subtag registry
    • uri: URI that reaches a help desk for callers supporting the specified language.

9.2.2. RUE Configuration

  • lifetime: Specifies how long (in seconds) the RUE MAY cache the configuration values. Values may not be valid when lifetime expires. If the RUE caches configuration values, it MUST cryptographically protect them. The RUE SHOULD retrieve a fresh copy of the configuration before the lifetime expires or as soon as possible after it expires. The lifetime is not guaranteed: the configuration may change before the lifetime value expires. In that case, the Provider MAY indicate this by generating authorization challenges to requests and/or prematurely terminating a registration.Emergency Calls MUST continue to work.
  • sip-password: (OPTIONAL) a password used for SIP, STUN and TURN authentication. The RUE device retains this data, which must be stored securely. If it is not supplied, but was supplied on a prior invocation of this interface, the most recently supplied password MUST be used. If it was never supplied, the password used to authenticate to the configuration service is used for SIP, STUN and TURN.
  • phone-number: (OPTIONAL) The telephone number (in E.164 format) assigned to this subscriber. This becomes the user portion of the SIP URI identifying the subscriber.
  • outbound-proxy: (OPTIONAL) A URI of a SIP proxy to be used when sending requests to the Provider.
  • mwi: (OPTIONAL) A URI identifying a SIP event server that generates "message-summary" events for this subscriber.
  • videomail: (OPTIONAL) A SIP URI that can be called to retrieve videomail messages.
  • contacts: (CONDITIONAL) An HTTPS URI that may be used to export (retrieve) the subscriber's complete contact list managed by the Provider.
  • carddav: (OPTIONAL) A username, password and domain name (separated by ""@"") identifying a "CardDAV" server that can be used to synchronize the RUE's contact list with the contact list managed by the Provider. Optionally contains a user name and/or password that may be used with the server. If username or password are not supplied, the main account credentials are used.
  • sendLocationWithRegistration: (OPTIONAL) True if the RUE should send a Geolocation Header with REGISTER, false if it should not. Defaults to false if not present.
  • ice-servers: (OPTIONAL) An array of URLs identifying STUN and TURN servers available for use by the RUE for establishing media streams in calls via the Provider.

9.2.3. Examples

  {
    "signUp": [
       { "language" : "en", "uri" : "welcome-en.example.net"} ,
       { "language" : "es", "uri" : "welcome-es.example.net"} ] ,
    "dialAround": [
       { "language" : "en", "frontDoor" : "fd-en.example.net",
            "oneStage" : "1stg-eng.example.com" } ,
       { "language" : "es", "frontDoor" : "fd-es.example.net",
            "oneStage" : "1stg-spn.example.com" } ] ,
    "helpDesk": [
       { "language" : "en", "uri" : "help-en.example.net"} ,
       { "language" : "es", "uri" : "help-es.example.net"} ] ,
Figure 4: Example JSON provider configuration payload
  {
    "lifetime": 86400,
    "display-name" : "Bob Smith",
    "phone-number": "+18135551212",
    "provider-domain": "red.example.net",
    "outbound-proxies": [
      "sip:p1.red.example.net",
      "sip:p2.red.example.net"
      ],
    "mwi": "sip:+18135551212@red.example.net",
    "videomail": "sip:+18135551212@vm.red.example.net",
    "contacts": "https://red.example.net:443/contacts/1dess45awd",
    "carddav": "bob@red.example.com" ,
    "sendLocationWithRegistration": false,
    "ice-servers": [
       {"stun":"stun.l.google.com:19302" },
       {"turn":"turn.red.example.net:3478"}
    ],
    }
Figure 5: Example JSON RUE configuration payload

9.2.4. Using the Provider Selection and RUE Configuration Services Together

One way to use these two services is:

  • At startup, the RUE retrieves the provider list for the country it is located in.
  • For each provider in the list:

    • If the RUE does not have credentials for that provider, use the configuration service without credentials to obtain signup, dial around and helpdesk information.
    • If the RUE has credentials for that provider, use the configuration service with credentials to obtain all configuration data.

9.3. OpenAPI Interface Descriptions

The interfaces in Sections Section 9.1 and Section 9.2 are formally specified with OpenAPI 3.0 descriptions in yaml form.

openapi: 3.0.1
info:
  title: RUM API
  version: "1.0"
servers:
  - url: http://localhost/rum/v1
paths:
  /Providers:
    get:
      summary: Get a list of providers and domains to get
               config data from
      operationId: GetProviderList
      responses:
        '200':
          description: List of providers for a country
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/ProviderList'
  /ProviderConfig:
    get:
      summary: Configuration data for one provider
      operationId: GetProviderConfiguration
      parameters:
        - in: query
          name: apiKey
          schema:
            type: string
          description: API Key assigned to this implementation
        - in: query
          name: instanceId
          schema:
            type: string
          required: true
          description: Unique string for this implementation
                       on this device
      responses:
        '200':
          description: configuration object
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/ProviderConfigurationData'
  /RueConfig:
    get:
      summary: Configuration data for one RUE
      operationId: GetRueConfiguration
      parameters:
        - in: query
          name: apiKey
          schema:
            type: string
          description: API Key assigned to this implementation
        - in: query
          name: instanceId
          schema:
            type: string
          required: true
          description: Unique string for this implementation
                       on this device
      responses:
        '200':
          description: configuration object
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/RueConfigurationData'
  /Versions:
    servers:
      - url: https://api.example.com/rum
        description: Override base path for Versions query
    get:
      summary: Retrieves all supported versions
      operationId: RetrieveVersions
      responses:
        '200':
          description: Versions supported
          content:
            application/json:
              schema:
                $ref: '#/components/schemas/VersionsArray'
components:
  schemas:
    ProviderList:
      type: object
      required:
        - providers
      properties:
        providers:
          type: array
          items:
            type: object
            required:
              - name
              - domain
            properties:
              name:
                type: string
                description: Human readable provider name
              domain:
                type: string
                description: provider domain for interface
    VersionsArray:
      type: object
      required:
        - versions
      properties:
        versions:
          type: array
          items:
            type: object
            required:
              - major
              - minor
            properties:
              major:
                type: integer
                format: int32
                description: Version major number
              minor:
                type: integer
                format: int32
                description: Version minor number
    ProviderConfigurationData:
      type: object
      properties:
        signup:
          type: object
          required:
            - language
            - uri
          properties:
            language:
              type: string
              description: entry from IANA language-subtag-registry
            uri:
              type: string
              format: uri
              description: uri to signup website supporting language
        dialAround:
          type: object
          required:
            - language
            - frontDoor
          properties:
            language:
              type: string
              description: entry from IANA language-subtag-registry
            frontDoor:
              type: string
              format: uri
              description: SIP uri for 2 stage dial around
            oneStage:
              type: string
              format: uri
              description: SIP uri for 1 stage dial around
        helpDesk:
          type: object
          required:
            - language
            - uri
          properties:
            language:
              type: string
              description: entry from IANA language-subtag-registry
            uri:
              type: string
              format: uri
              description: SIP uri of helpdesk supporting language
    RueConfigurationData:
      type: object
      properties:
        lifetime:
          type: integer
          description: how long (in seconds) the RUE MAY cache the
                       configuration values
        sip-password:
          type: string
        phone-number:
          type: string
          description: telephone number assigned this subscriber
        outbound-proxy:
          type: string
          format: uri
          description: SIP uri of proxy to be used when sending
                       requests to the Provider
        mwi:
          type: string
          format: uri
          description: A URI identifying a SIP event server that
              generates "message-summary" events for this subscriber.
        videomail:
          type: string
          format: uri
          description: A SIP URI that can be called to retrieve
                       videomail messages.
        contacts:
          type: string
          format: uri
          description: An HTTPS URI that may be used to export
             (retrieve) the subscriber's complete contact list
             managed by the Provider.
        carddav:
          type: object
          description: CardDAV server and user information that can be
               used to synchronize the RUE's contact list with the
               contact list managed by the Provider.
          properties:
            domain:
              type: string
              description: CardDAV server address
            username:
              type: string
              description: username for authentication with CardDAV
                 server.  Use provider username if not provided
            password:
              type: string
              description: password for authentication to the CardDAV
                 server. Use provider password if not provided
        sendLocationWithRegistration:
          type: boolean
          description: True if the RUE should send a Geolocation Header
                with REGISTER, false if it should not.
                 Defaults to false if not present.
        ice-servers:
          type: array
          items:
            type: string
            format: uri
            description: URIs identifying STUN and TURN servers
               available for use by the RUE for establishing
               media streams in calls via the Provider.
Figure 6: Provider List OpenAPI description

10. Acknowledgements

Brett Henderson and Jim Malloy provided many helpful edits to prior versions of this document.

11. IANA Considerations

11.1. RUE Provider List Registry

IANA has created the "RUE Provider List" registry. The management policy for this registry is "Expert Review" [RFC8126]. The expert should prefer a regulator operated or designated list interface operator. Otherwise, evidence that the proposed list interface operator will provide a complete list of providers is required to add the entry to the registry. Updates to the registry are permitted if the expert judges the new proposed uri to be better than the existing entry. Each entry has two fields, values for both of which MUST be provided when registering or updating an entry:

  • country code: a two letter ISO93166 country code
  • list uri: a uri that implements the provider list interface for that country

11.2. Registration of rue-owner purpose parameter

This document defines the new predefined value "rue-owner" for the "purpose" header field parameter of the Call-Info header field. This modifies the "Header Field Parameters and Parameter Values" subregistry of the "Session Initiation Protocol (SIP) Parameters" registry by adding this RFC as a reference to the line for the header field "Call-Info" and parameter name "purpose"

  • Header Field: Call-Info
  • Parameter Name: purpose
  • Predefined Values: Yes

12. Security Considerations

The RUE is required to communicate with servers on public IP addresses and specific ports to perform its required functions. If it is necessary for the RUE to function on a corporate or other network that operates a default-deny firewall between the RUE and these services, the user must arrange with their network manager for passage of traffic through such a firewall in accordance with the protocols and associated SRV records as exposed by the Provider. Because VRS providers may use different ports for different services, these port numbers may differ from Provider to Provider.

13. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC8446]
Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, , <https://www.rfc-editor.org/info/rfc8446>.
[RFC3261]
Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, DOI 10.17487/RFC3261, , <https://www.rfc-editor.org/info/rfc3261>.
[RFC3263]
Rosenberg, J. and H. Schulzrinne, "Session Initiation Protocol (SIP): Locating SIP Servers", RFC 3263, DOI 10.17487/RFC3263, , <https://www.rfc-editor.org/info/rfc3263>.
[RFC3264]
Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with Session Description Protocol (SDP)", RFC 3264, DOI 10.17487/RFC3264, , <https://www.rfc-editor.org/info/rfc3264>.
[RFC3840]
Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)", RFC 3840, DOI 10.17487/RFC3840, , <https://www.rfc-editor.org/info/rfc3840>.
[RFC5626]
Jennings, C., Ed., Mahy, R., Ed., and F. Audet, Ed., "Managing Client-Initiated Connections in the Session Initiation Protocol (SIP)", RFC 5626, DOI 10.17487/RFC5626, , <https://www.rfc-editor.org/info/rfc5626>.
[RFC8866]
Begen, A., Kyzivat, P., Perkins, C., and M. Handley, "SDP: Session Description Protocol", RFC 8866, DOI 10.17487/RFC8866, , <https://www.rfc-editor.org/info/rfc8866>.
[RFC3323]
Peterson, J., "A Privacy Mechanism for the Session Initiation Protocol (SIP)", RFC 3323, DOI 10.17487/RFC3323, , <https://www.rfc-editor.org/info/rfc3323>.
[RFC3605]
Huitema, C., "Real Time Control Protocol (RTCP) attribute in Session Description Protocol (SDP)", RFC 3605, DOI 10.17487/RFC3605, , <https://www.rfc-editor.org/info/rfc3605>.
[RFC6665]
Roach, A.B., "SIP-Specific Event Notification", RFC 6665, DOI 10.17487/RFC6665, , <https://www.rfc-editor.org/info/rfc6665>.
[RFC3311]
Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE Method", RFC 3311, DOI 10.17487/RFC3311, , <https://www.rfc-editor.org/info/rfc3311>.
[RFC5393]
Sparks, R., Ed., Lawrence, S., Hawrylyshen, A., and B. Campen, "Addressing an Amplification Vulnerability in Session Initiation Protocol (SIP) Forking Proxies", RFC 5393, DOI 10.17487/RFC5393, , <https://www.rfc-editor.org/info/rfc5393>.
[RFC5658]
Froment, T., Lebel, C., and B. Bonnaerens, "Addressing Record-Route Issues in the Session Initiation Protocol (SIP)", RFC 5658, DOI 10.17487/RFC5658, , <https://www.rfc-editor.org/info/rfc5658>.
[RFC5954]
Gurbani, V., Ed., Carpenter, B., Ed., and B. Tate, Ed., "Essential Correction for IPv6 ABNF and URI Comparison in RFC 3261", RFC 5954, DOI 10.17487/RFC5954, , <https://www.rfc-editor.org/info/rfc5954>.
[RFC3960]
Camarillo, G. and H. Schulzrinne, "Early Media and Ringing Tone Generation in the Session Initiation Protocol (SIP)", RFC 3960, DOI 10.17487/RFC3960, , <https://www.rfc-editor.org/info/rfc3960>.
[RFC6442]
Polk, J., Rosen, B., and J. Peterson, "Location Conveyance for the Session Initiation Protocol", RFC 6442, DOI 10.17487/RFC6442, , <https://www.rfc-editor.org/info/rfc6442>.
[RFC3327]
Willis, D. and B. Hoeneisen, "Session Initiation Protocol (SIP) Extension Header Field for Registering Non-Adjacent Contacts", RFC 3327, DOI 10.17487/RFC3327, , <https://www.rfc-editor.org/info/rfc3327>.
[RFC5245]
Rosenberg, J., "Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols", RFC 5245, DOI 10.17487/RFC5245, , <https://www.rfc-editor.org/info/rfc5245>.
[RFC3326]
Schulzrinne, H., Oran, D., and G. Camarillo, "The Reason Header Field for the Session Initiation Protocol (SIP)", RFC 3326, DOI 10.17487/RFC3326, , <https://www.rfc-editor.org/info/rfc3326>.
[RFC3515]
Sparks, R., "The Session Initiation Protocol (SIP) Refer Method", RFC 3515, DOI 10.17487/RFC3515, , <https://www.rfc-editor.org/info/rfc3515>.
[RFC4488]
Levin, O., "Suppression of Session Initiation Protocol (SIP) REFER Method Implicit Subscription", RFC 4488, DOI 10.17487/RFC4488, , <https://www.rfc-editor.org/info/rfc4488>.
[RFC7647]
Sparks, R. and A.B. Roach, "Clarifications for the Use of REFER with RFC 6665", RFC 7647, DOI 10.17487/RFC7647, , <https://www.rfc-editor.org/info/rfc7647>.
[RFC3891]
Mahy, R., Biggs, B., and R. Dean, "The Session Initiation Protocol (SIP) "Replaces" Header", RFC 3891, DOI 10.17487/RFC3891, , <https://www.rfc-editor.org/info/rfc3891>.
[RFC3892]
Sparks, R., "The Session Initiation Protocol (SIP) Referred-By Mechanism", RFC 3892, DOI 10.17487/RFC3892, , <https://www.rfc-editor.org/info/rfc3892>.
[RFC3665]
Johnston, A., Donovan, S., Sparks, R., Cunningham, C., and K. Summers, "Session Initiation Protocol (SIP) Basic Call Flow Examples", BCP 75, RFC 3665, DOI 10.17487/RFC3665, , <https://www.rfc-editor.org/info/rfc3665>.
[RFC2392]
Levinson, E., "Content-ID and Message-ID Uniform Resource Locators", RFC 2392, DOI 10.17487/RFC2392, , <https://www.rfc-editor.org/info/rfc2392>.
[RFC3966]
Schulzrinne, H., "The tel URI for Telephone Numbers", RFC 3966, DOI 10.17487/RFC3966, , <https://www.rfc-editor.org/info/rfc3966>.
[RFC4967]
Rosen, B., "Dial String Parameter for the Session Initiation Protocol Uniform Resource Identifier", RFC 4967, DOI 10.17487/RFC4967, , <https://www.rfc-editor.org/info/rfc4967>.
[RFC4102]
Jones, P., "Registration of the text/red MIME Sub-Type", RFC 4102, DOI 10.17487/RFC4102, , <https://www.rfc-editor.org/info/rfc4102>.
[RFC4103]
Hellstrom, G. and P. Jones, "RTP Payload for Text Conversation", RFC 4103, DOI 10.17487/RFC4103, , <https://www.rfc-editor.org/info/rfc4103>.
[RFC4733]
Schulzrinne, H. and T. Taylor, "RTP Payload for DTMF Digits, Telephony Tones, and Telephony Signals", RFC 4733, DOI 10.17487/RFC4733, , <https://www.rfc-editor.org/info/rfc4733>.
[RFC6263]
Marjou, X. and A. Sollaud, "Application Mechanism for Keeping Alive the NAT Mappings Associated with RTP / RTP Control Protocol (RTCP) Flows", RFC 6263, DOI 10.17487/RFC6263, , <https://www.rfc-editor.org/info/rfc6263>.
[RFC5104]
Wenger, S., Chandra, U., Westerlund, M., and B. Burman, "Codec Control Messages in the RTP Audio-Visual Profile with Feedback (AVPF)", RFC 5104, DOI 10.17487/RFC5104, , <https://www.rfc-editor.org/info/rfc5104>.
[RFC5168]
Levin, O., Even, R., and P. Hagendorf, "XML Schema for Media Control", RFC 5168, DOI 10.17487/RFC5168, , <https://www.rfc-editor.org/info/rfc5168>.
[RFC6352]
Daboo, C., "CardDAV: vCard Extensions to Web Distributed Authoring and Versioning (WebDAV)", RFC 6352, DOI 10.17487/RFC6352, , <https://www.rfc-editor.org/info/rfc6352>.
[RFC6764]
Daboo, C., "Locating Services for Calendaring Extensions to WebDAV (CalDAV) and vCard Extensions to WebDAV (CardDAV)", RFC 6764, DOI 10.17487/RFC6764, , <https://www.rfc-editor.org/info/rfc6764>.
[RFC7095]
Kewisch, P., "jCard: The JSON Format for vCard", RFC 7095, DOI 10.17487/RFC7095, , <https://www.rfc-editor.org/info/rfc7095>.
[RFC3842]
Mahy, R., "A Message Summary and Message Waiting Indication Event Package for the Session Initiation Protocol (SIP)", RFC 3842, DOI 10.17487/RFC3842, , <https://www.rfc-editor.org/info/rfc3842>.
[RFC3458]
Burger, E., Candell, E., Eliot, C., and G. Klyne, "Message Context for Internet Mail", RFC 3458, DOI 10.17487/RFC3458, , <https://www.rfc-editor.org/info/rfc3458>.
[RFC7525]
Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, , <https://www.rfc-editor.org/info/rfc7525>.
[RFC6881]
Rosen, B. and J. Polk, "Best Current Practice for Communications Services in Support of Emergency Calling", BCP 181, RFC 6881, DOI 10.17487/RFC6881, , <https://www.rfc-editor.org/info/rfc6881>.
[RFC7852]
Gellens, R., Rosen, B., Tschofenig, H., Marshall, R., and J. Winterbottom, "Additional Data Related to an Emergency Call", RFC 7852, DOI 10.17487/RFC7852, , <https://www.rfc-editor.org/info/rfc7852>.
[RFC7874]
Valin, JM. and C. Bran, "WebRTC Audio Codec and Processing Requirements", RFC 7874, DOI 10.17487/RFC7874, , <https://www.rfc-editor.org/info/rfc7874>.
[RFC7742]
Roach, A.B., "WebRTC Video Processing and Codec Requirements", RFC 7742, DOI 10.17487/RFC7742, , <https://www.rfc-editor.org/info/rfc7742>.
[RFC8126]
Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, , <https://www.rfc-editor.org/info/rfc8126>.
[RFC8825]
Alvestrand, H., "Overview: Real-Time Protocols for Browser-Based Applications", RFC 8825, DOI 10.17487/RFC8825, , <https://www.rfc-editor.org/info/rfc8825>.
[RFC8827]
Rescorla, E., "WebRTC Security Architecture", RFC 8827, DOI 10.17487/RFC8827, , <https://www.rfc-editor.org/info/rfc8827>.
[RFC8829]
Uberti, J., Jennings, C., and E. Rescorla, Ed., "JavaScript Session Establishment Protocol (JSEP)", RFC 8829, DOI 10.17487/RFC8829, , <https://www.rfc-editor.org/info/rfc8829>.
[RFC8834]
Perkins, C., Westerlund, M., and J. Ott, "Media Transport and Use of RTP in WebRTC", RFC 8834, DOI 10.17487/RFC8834, , <https://www.rfc-editor.org/info/rfc8834>.
[RFC8835]
Alvestrand, H., "Transports for WebRTC", RFC 8835, DOI 10.17487/RFC8835, , <https://www.rfc-editor.org/info/rfc8835>.
[RFC8760]
Shekh-Yusef, R., "The Session Initiation Protocol (SIP) Digest Access Authentication Scheme", RFC 8760, DOI 10.17487/RFC8760, , <https://www.rfc-editor.org/info/rfc8760>.
[RFC8599]
Holmberg, C. and M. Arnold, "Push Notification with the Session Initiation Protocol (SIP)", RFC 8599, DOI 10.17487/RFC8599, , <https://www.rfc-editor.org/info/rfc8599>.

Author's Address

Brian Rosen
470 Conrad Dr
Mars, PA 16046
United States of America