Internet-Draft | CA OF and PS DAG MC Extension | November 2023 |
Koutsiamanis, et al. | Expires 11 May 2024 | [Page] |
High reliability and low jitter can be achieved by being able to send data packets through multiple paths, via different parents, in a network. This document details how to exchange the necessary information within RPL control packets to let a node better select the different parents that will be used to forward a packet over different paths. This document also describes the Objective Function which takes advantage of this information to implement multi-path routing.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 11 May 2024.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
Networks in the industrial context must provide stringent guarantees in terms of reliability and predictability, with this domain being one of the main ones addressed by Deterministic Networking [RFC8557]. One of the ways of achieving such guarantees is through Packet Replication and Elimination (PRE) (Section 4.5.3 of [RFC9030]), a technique which allows redundant paths in the network to be utilized for traffic requiring higher reliability. Another is to have pre-selected backup paths on standby for quick packet retransmission when packet failures occur. Load-balancing can be also used to make sure that not all traffic passes through the same nodes, to more evenly spread the packet forwarding load. Allowing industrial applications to function over wireless networks requires the application of the principles and architecture of Deterministic Networking [RFC8655]. This results in designs that aim at optimizing packet delivery rate and bounding latency. Additionally, nodes operating on battery need to minimize their energy consumption.¶
As an example, to meet this goal, IEEE Std. 802.15.4 [IEEE802154] provides Time-Slotted Channel Hopping (TSCH), a mode of operation that uses a common communication schedule based on timeslots to allow deterministic medium access as well as channel hopping to work around radio interference. However, since TSCH uses retransmissions in the event of a failed transmission, end-to-end latency and jitter performance can deteriorate.¶
Furthermore, the 6TiSCH working group, focusing on IPv6 over IEEE Std. 802.15.4-TSCH, has worked on these issues and produced the "6TiSCH Architecture" [RFC9030] to address that case.¶
Building a multi-path DODAG can be achieved based on the RPL capability of having multiple parents for each node in a network, a subset of which is used to forward packets. In order to select parents to be part of this subset, the RPL Objective Function (OF) needs additional information. This document describes an OF which implements multi-path routing and specifies the transmission of this specific path information.¶
This document describes a new Objective Function (OF) called the Common Ancestor (CA) OF (see Section 4). A detailed description is given of how the path information is used within the CA OF and how the subset of parents for forwarding packets is selected. This specification defines a new Objective Code Point (OCP) for the CA OF.¶
For the path information, this specification focuses on the extensions to the DAG Metric Container [RFC6551] required for supplying to the CA OF a part of the information it needs to operate. This information is the RPL [RFC6550] parent address set of a node and it must be sent to potential children of the node. The RPL DIO Control Message is the canonical way of broadcasting this kind of information and therefore its DAG Metric Container [RFC6551] field is used to append a Node State and Attribute (NSA) object. The node's parent address set is stored as an optional TLV within the NSA object. This specification defines the type value and structure for the parent address set TLV (see Section 5).¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
The draft uses the following Terminology from other RFCs:¶
The draft introduces the following Terminology:¶
In the RPL protocol, each node maintains a list of potential parents. When more than one parent is required, as when performing PRE, the RPL DODAG Preferred Parent node is used, as per RPL [RFC6550] parent selection, effectively depending on the OF used. If the CA OF is used, the way this choice is made is described in Section 4. Furthermore, to construct an alternative path toward the root, in addition to the PP node, each node in the network selects one or more parents, called Alternative Parents (APs), from its Parent Set (PS).¶
There are multiple possible policies for selecting the AP node. This section details three such possible policies.¶
All three policies defined perform AP selection based on common ancestors, named Common Ancestor Strict, Common Ancestor Medium, and Common Ancestor Relaxed, depending on how restrictive the selection process is. A more restrictive policy will limit flooding but might fail to select an appropriate AP, while a less restrictive one will more often find an appropriate AP but might increase flooding.¶
All three policies apply their corresponding common ancestor criterion to filter the list of candidate neighbors in the Alternative Parent set.¶
If after the filtering there are multiple condition-meeting candidate nodes, the node MUST select at least one of them as its AP node. The way this choice is made depends on which OF is used. If the CA OF is used, the way this choice is made is described in Section 4.¶
In the CA Strict OF the node will check if its Preferred Grand Parent (PGP), the PP of its PP, is the same as the PP of the potential AP.¶
For example, in Figure 1, the source node S must know its grandparent sets through nodes A, B, C, and D. The Parent Sets (PS) and the Preferred Parents (PS) of nodes A, B, C, and D are shown on the side of the figure. The CA Strict parent selection policy will select an AP for node S for which PP(PP(S)) = PP(AP). Given that PP(PP(S)) = Y:¶
Therefore, node S MUST select node B as its AP node, since PP(PP(S)) = Y = PP(B).¶
In the CA Medium OF the node will check if its Preferred Grand Parent (PGP), the PP of its PP, is contained in the PS of the potential AP.¶
Using the same example, in Figure 1, the CA Medium parent selection policy will select an AP for node S for which PP(PP(S)) is in PS(AP). Given that PP(PP(S)) = Y:¶
Therefore, S MUST select at least one node among B and D as its AP node.¶
In the CA Relaxed OF the node will check if the Parent Set (PS) of its Preferred Parent (PP) has a node in common with the PS of the potential AP.¶
Using the same example, in Figure 1, the CA Relaxed parent selection policy will select an AP for node S for which PS(PP(S)) has at least one node in common with PS(AP). Given that PS(PP(S)) = {X, Y, Z}:¶
Therefore, S MUST select at least one node among A, B, and D as its AP node.¶
An OF which allows the multiple paths to remain correlated is detailed here. More specifically, when using this OF a node will select an AP node "close" to its PP node to allow the operation of overhearing between parents. Closeness here is not strictly defined, however, the premise is that those candidate parent nodes that have common parents themselves have a higher probability of being within each other's radio range, though it's of course not guaranteed. For more details about overhearing and its use in this context see the "Complex Track with Replication and Elimination" in Section 4.5.3 of [RFC9030]. If multiple potential APs match this condition, one of the APs with the lowest rank will be registered, with the choice between multiple nodes with the same lowest rank being implementation-specific.¶
The OF described here is an extension of The Minimum Rank with Hysteresis Objective Function (MRHOF) [RFC6719]. The CA OF does not update [RFC6719]. Rather, it uses the existing definition of MRHOF in [RFC6719] to build a new OF (with a new Objective Code Point (OCP)) which provides additional functionality, while maintaining compatibility by retaining the existing functionality of MRHOF for the preferred parent. To be precise, this OF extends MRHOF by specifying how an AP is selected while the selection and switching of the PP remain unaltered. Importantly, the calculation of the rank of the node through each candidate neighbor and the selection of the PP is kept the same as in MRHOF.¶
How the CA OF differs from MRHOF in a section-by-section manner follows in detail:¶
Same as MRHOF extended to AP selection. The CA OF operates like MRHOF for AP selection by maintaining separate:¶
All the Common Ancestor AP Selection Policies (Section 3) apply their corresponding criterion to filter the list of candidate neighbors in the Alternative Parent set. The AP is then selected from the Alternative Parent set based on Rank and using hysteresis as is done for the PP in MRHOF. It is noteworthy that the OF uses the same Objective Code Point (OCP): (TBD1) for all policies used.¶
The PS information can be used by any of the described AP selection policies or other ones not described here, depending on requirements. It is optional for all nodes to use the same AP selection policies. Different nodes may use different AP selection policies since the selection policy is local to each node. For example, using different policies can be used to vary the transmission reliability in each hop. Some suggestions are provided in Appendix B.¶
In order to select their AP node, nodes need to be aware of their grandparent node sets. Within RPL [RFC6550], the nodes use the DODAG Information Object (DIO) Control Message to broadcast information about themselves to potential children. However, RPL [RFC6550], does not define how to propagate information related to the parent set, which is what this document addresses.¶
DIO messages can carry multiple options, out of which the DAG Metric Container option [RFC6551] is the most suitable structurally and semantically to carry the parent set. The DAG Metric Container option itself can carry different nested objects, out of which the Node State and Attribute (NSA) [RFC6551] is appropriate for transferring generic node state data. Within the Node State and Attribute, it is possible to store optional TLVs representing various node characteristics. As per the Node State and Attribute (NSA) [RFC6551] description, no TLV has been defined for use. This document defines one TLV for transmitting a node's parent set.¶
Figure 2 shows the structure of the DIO Control Message when a DAG Metric Container option is included. The DAG Metric Container option type (DAGMC Type in Figure 2) has the value 0x02 as per the IANA registry for the RPL Control Message Options, and is defined in [RFC6550]. The DAG Metric Container option length (DAGMC Length in Figure 2) expresses the DAG Metric Container length in bytes. DAG Metric Container data holds the actual data and is shown expanded in Figure 3.¶
The structure of the DAG Metric Container data in the form of a Node State and Attribute (NSA) object with a TLV in the NSA Optional TLVs field is shown in Figure 3. The first 32 bits comprise the DAG Metric Container header and all the following bits are part of the Node State and Attribute object body, as defined in [RFC6551]. This document defines a new TLV, which MUST be carried in the Node State and Attribute (NSA) object Optional TLVs field within the context of the use of the CA OF. The TLV is named Parent Set and is abbreviated as PS in Figure 3.¶
The PS is used in the process of parent selection, and especially in AP selection since it can help the alternative path to not significantly deviate from the preferred path. The Parent Set is information local to the node that broadcasts it.¶
The PS is used only within NSA objects configured as a metric, therefore the DAG Metric Container field "C" MUST be 0. Additionally, since the information in the PS needs to be propagated downstream but cannot be aggregated, the DAG Metric Container field "R" MUST be 1. Finally, since the information contained is by definition partial, specifically just the parent set of the DIO-sending node, the DAG Metric Container field "P" MUST be 1.¶
The presence of incorrectly configured flags MUST render the Parent Set TLV invalid. This case MUST be handled equivalently to operating with a Parent Set TLV where there are no PS IPv6 addresses and the PS Length is 0.¶
The presence of a PS Length value that is not a multiple of 16 or larger than 240 MUST render the Parent Set TLV invalid. This case MUST be handled equivalently to operating with a Parent Set TLV where there are no PS IPv6 addresses and the PS Length is 0.¶
PRE is very helpful when the aim is to increase reliability for a certain path, however, its use creates additional traffic as part of the replication process. It is conceivable that not all paths have stringent reliability requirements. Therefore, a way to control whether PRE is applied to a path's packets SHOULD be implemented. For example, a traffic class label can be used to determine this behavior per flow type as described in Deterministic Networking Architecture [RFC8655].¶
All the security considerations from [RFC6550], [RFC6551], and [RFC6719] apply.¶
In this document, the structure of the DIO control message is extended, within the pre-defined DIO options. The additional information is the list of IPv6 addresses of the parent set of the node transmitting the DIO. This use of this additional information can have the following additional potential consequences:¶
This document requests the allocation of a new value (TBD1) from the "Objective Code Point (OCP)" registry in the "Routing Protocol for Low Power and Lossy Networks (RPL)" registry group. The Description field should have the value "Common Ancestor Objective Function (CAOF)".¶
This document also requests the allocation of a new value (TBD2) for the "Parent Set" TLV from the "Routing Metric/Constraint TLVs" registry in the "Routing Protocol for Low Power and Lossy Networks (RPL) Routing Metric/Constraint" registry group. The Description field should have the value "Parent Set".¶
We are very grateful to Dominique Barthel, Rahul Jadhav, Fabrice Theoleyre, Diego Dujovne, Derek Jianqiang Hou, Michael Richardson, and Alvaro Retana for their comments, feedback, and support which lead to many improvements to this document. We would also like to thank Tomas Lagos Jenschke very much for helping in the implementation and evaluation of this document.¶
A research-stage implementation of the PRE mechanism using the proposed extension as part of a 6TiSCH IOT use case was developed at IMT Atlantique, France by Tomas Lagos Jenschke and Remous-Aris Koutsiamanis. It was implemented on the open-source Contiki OS and tested with the Cooja simulator. The DIO DAGMC NSA extension is implemented with a configurable number of parents from the parent set of a node to be reported.¶
The simulation setup is:¶
Simulation results:¶
Routing Method | Average Packet Delivery Rate (%) | Average Traversed Nodes/packet (#) | Average Duplications/packet (#) |
---|---|---|---|
RPL | 82.70 | 5.56 | 7.02 |
2nd ETX | 99.38 | 14.43 | 31.29 |
CA Strict | 97.32 | 9.86 | 18.23 |
CA Medium | 99.66 | 13.75 | 28.86 |
Links:¶
The manner of choosing an AP selection policy is left to the implementation, for maximum flexibility.¶
For example, a different policy can be used per traffic type. The network configurator can choose the CA Relaxed policy to increase reliability (thus producing some flooding) for specific, extremely important, alert packets. On the other hand, all normal data traffic uses the CA Strict policy. Therefore, an exception is made just for the alert packets.¶
Another option would be to devise a new disjoint policy, where the paths are on purpose non-correlated, to increase path diversity and resilience against whole groups of nodes failing. The disadvantage may be increased jitter.¶
Finally, a network configurator may provide the CA policies with a preference order of Strict > Medium > Relaxed as a means of falling back to more flood-prone policies to maintain reliability.¶