Internet-Draft | RIFT YANG Model | June 2024 |
Zhang, et al. | Expires 22 December 2024 | [Page] |
This document defines a YANG data model for the configuration and management of Routing in Fat Trees (RIFT) Protocol. The model is based on YANG 1.1 as defined in RFC7950 and conforms to the Network Management Datastore Architecture (NMDA) as described in RFC8342.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 22 December 2024.¶
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
[I-D.ietf-rift-rift] introduces the protocol definition of RIFT. This document defines a YANG data model that can be used to configure and manage the RIFT protocol. This model imports and augments ietf-routing YANG model defined in [RFC8349].¶
The terminology for describing YANG data models is found in [RFC6020] and [RFC7950], including:¶
augment¶
container¶
choice¶
data model¶
data node¶
grouping¶
identity¶
leaf¶
leaf-list¶
list¶
module¶
uses¶
The following abbreviations are used in this document and the defined model:¶
RIFT: Routing in Fat Trees [I-D.ietf-rift-rift].¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
The content of this section is copied from [I-D.ietf-rift-rift] for reading convenience.¶
LIE: This is an acronym for a "Link Information Element" exchanged on all the system's links running RIFT to form _ThreeWay_ adjacencies and carry information used to perform Zero Touch Provisioning (ZTP) of levels.¶
POD: An acronym for a "Point of Delivery". A self-contained vertical slice or subset of a Clos or Fat Tree network containing normally only level 0 and level 1 nodes. A node in a PoD communicates with nodes in other PoDs via the ToF nodes. PoDs are numbered to distinguish them and PoD value 0 (defined later in the encoding schema as _common.default_pod_) is used to denote "undefined" or "any" PoD.¶
TIE: This is an acronym for a "Topology Information Element". TIEs are exchanged between RIFT nodes to describe parts of a network such as links and address prefixes. A TIE has always a direction and a type. North TIEs (sometimes abbreviated as N-TIEs) are used when dealing with TIEs in the northbound representation and South-TIEs (sometimes abbreviated as S-TIEs) for the southbound equivalent. TIEs have different types such as node and prefix TIEs.¶
Tree diagrams used in this document follow the notation defined in [RFC8340].¶
In this document, names of data nodes, actions, and other data model objects are often used without a prefix, as long as it is clear from the context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.¶
The model covers RIFT [I-D.ietf-rift-rift].¶
This model can be used to configure and manage the RIFT protocol. The operational state data and statistics can be retrieved by this model. The subscription and push mechanism defined in [RFC8639] and [RFC8641] can be implemented by the user to subscribe to notifications on the data nodes in this model.¶
The model contains all the basic configuration parameters to operate the protocol. Depending on the implementation choices, some systems may not allow some of the advanced parameters to be configurable. The occasionally implemented parameters are modeled as optional features in this model. This model can be extended, and it has been structured in a way that such extensions can be conveniently made.¶
The RIFT YANG module augments the /routing/control-plane-protocols/ control-plane-protocol path defined in the ietf-routing module. The ietf-rift model defines a single instance of RIFT. Multiple instances are instantiated as multiple control-plane protocols instances.¶
This model imports and augments ietf-routing YANG model defined in [RFC8349]. Both configuration branch and state branch of [RFC8349] are augmented. The configuration branch covers node base and policy configuration. The container "rift" is the top level container in this data model. The container is expected to enable RIFT protocol functionality.¶
The YANG data model defined in this document conforms to the Network Management Datastore Architecture (NMDA) [RFC8342]. The operational state data is combined with the associated configuration data in the same hierarchy [RFC8407].¶
The RIFT YANG module defined in this document has all the common building blocks for the RIFT protocol.¶
The RIFT YANG module augments the /routing/control-plane-protocols/ control-plane-protocol path defined in the ietf-routing module. The ietf-rift model defines a single instance of RIFT. Multiple instances are instantiated as multiple control-plane protocols instances.¶
module: ietf-rift augment /rt:routing/rt:control-plane-protocols /rt:control-plane-protocol: +--rw rift* [name] +--rw name string +--ro level? level +--rw system-id system-id +--rw fabric-id? uint16 +--rw pod? uint32 +--rw configured-level? level +--rw overload | +--rw overload? boolean | +--rw (timeout-type)? | +--:(on-startup) | | +--rw on-startup-timeout? | | rt-types:timer-value-seconds16 | +--:(immediate) | +--rw immediate-timeout? | rt-types:timer-value-seconds16 +--ro proto-major-ver uint8 +--ro proto-minor-ver uint16 +--rw hierarchy-indications? enumeration +--rw flood-reduction? boolean +--rw nonce-increasing-interval? uint16 +--rw maximum-nonce-delta? uint8 {nonce-delta-adjust}? +--rw adjusted-lifetime? | rt-types:timer-value-seconds16 +--rw rx-lie-multicast-addr | +--rw ipv4? inet:ipv4-address | +--rw ipv6? inet:ipv6-address +--rw tx-lie-multicast-addr | +--rw ipv4? inet:ipv4-address | +--rw ipv6? inet:ipv6-address +--rw lie-tx-port? inet:port-number +--rw global-link-capabilities | +--rw bfd? boolean | +--rw v4-forwarding-capable? boolean | +--rw mtu-size? uint32 +--rw tide-generation-interval? | rt-types:timer-value-seconds16 +--rw tie-security* [security-type] {tie-security}? | +--rw security-type enumeration | +--rw shared? boolean | +--rw (auth-key-chain)? | +--:(auth-key-chain) | | +--rw key-chain? key-chain:key-chain-ref | +--:(auth-key-explicit) | +--rw key-id? uint32 | +--rw key? string | +--rw crypto-algorithm? identityref +--rw algorithm-type? enumeration +--rw instance-label? uint32 {label-switching}? +--ro hal | +--ro hal-value? level | +--ro system-ids* system-id +--ro miscabled-links* uint32 +--rw ttl? uint8 +--rw maximum-clock-delta? ieee802-1as-timestamp +--rw interfaces* [name] | +--ro link-id? uint32 | +--rw name if:interface-ref | +--rw cost? uint32 | +--rw rx-flood-port? inet:port-number | +--rw holdtime? | | rt-types:timer-value-seconds16 | +--rw address-families* | | iana-rt-types:address-family | +--rw advertised-source-addr | | +--rw ipv4? inet:ipv4-address-no-zone | | +--rw ipv6? inet:ipv6-address-no-zone | +--ro link-direction-type? enumeration | +--rw broadcast-capable? boolean | +--rw security {link-security}? | | +--rw security-type? enumeration | | +--rw shared? boolean | | +--rw (auth-key-chain)? | | +--:(auth-key-chain) | | | +--rw key-chain? key-chain:key-chain-ref | | +--:(auth-key-explicit) | | +--rw key-id? uint32 | | +--rw key? string | | +--rw crypto-algorithm? identityref | +--rw security-checking? enumeration | +--ro was-the-last-lie-accepted? boolean | +--ro last-lie-reject-reason? string | +--ro advertised-in-lies | | +--ro instance-label? uint32 | | | {label-switching}? | | +--ro you-are-flood-repeater? boolean | | +--ro not-a-ztp-offer? boolean | | +--ro you-are-sending-too-quickly? boolean | +--rw link-capabilities | | +--rw bfd? boolean | | +--rw v4-forwarding-capable? boolean | | +--rw mtu-size? uint32 | +--ro state enumeration | +--ro number-of-flaps? uint32 | +--ro last-state-change? yang:date-and-time | +--ro last-up? yang:date-and-time | +--ro last-down? yang:date-and-time | +--ro neighbors* [system-id] | +--ro level? level | +--ro system-id system-id | +--ro fabric-id? uint16 | +--ro pod? uint32 | +--ro proto-major-ver? uint8 | +--ro proto-minor-ver? uint16 | +--ro sent-offer | | +--ro level? level | | +--ro not-a-ztp-offer? boolean | +--ro received-offer | | +--ro level? level | | +--ro not-a-ztp-offer? boolean | | +--ro best? boolean | | +--ro removed-from-consideration? boolean | | +--ro removal-reason? string | +--ro received-source-addr | | +--ro ipv4? inet:ipv4-address-no-zone | | +--ro ipv6? inet:ipv6-address-no-zone | +--ro link-id-pair* [remote-id] | | +--ro local-id? uint32 | | +--ro remote-id uint32 | | +--ro if-index? uint32 | | +--ro if-name? if:interface-ref | | +--ro address-families* | | iana-rt-types:address-family | +--ro cost? uint32 | +--ro bandwidth? uint32 | +--ro received-link-capabilities | | +--ro bfd? boolean | | +--ro v4-forwarding-capable? boolean | | +--ro mtu-size? uint32 | +--ro received-in-lies | | +--ro instance-label? uint32 | | | {label-switching}? | | +--ro you-are-flood-repeater? boolean | | +--ro not-a-ztp-offer? boolean | | +--ro you-are-sending-too-quickly? boolean | +--ro nbr-flood-port? inet:port-number | +--ro tx-flood-port? inet:port-number | +--ro bfd? enumeration | +--ro outer-security-key-id? uint8 +--ro database +--ro ties* [tie-direction-type originator tie-type tie-number] +--ro tie-direction-type enumeration +--ro originator system-id +--ro tie-type enumeration +--ro tie-number uint32 +--ro seq? uint64 +--ro origination-time? ieee802-1as-timestamp +--ro origination-lifetime? uint32 +--ro remaining-lifetime? uint32 +--ro node | +--ro level? level | +--ro neighbors* [system-id] | | +--ro level? level | | +--ro system-id system-id | | +--ro fabric-id? uint16 | | +--ro pod? uint32 | | +--ro link-id-pair* [remote-id] | | | +--ro local-id? uint32 | | | +--ro remote-id uint32 | | | +--ro if-index? uint32 | | | +--ro if-name? if:interface-ref | | | +--ro address-families* | | | iana-rt-types:address-family | | +--ro cost? uint32 | | +--ro bandwidth? uint32 | | +--ro received-link-capabilities | | +--ro bfd? boolean | | +--ro v4-forwarding-capable? boolean | | +--ro mtu-size? uint32 | +--ro proto-minor-ver? uint16 | +--ro flood-reduction? boolean | +--ro hierarchy-indications | | +--ro hierarchy-indications? enumeration | +--ro overload-flag? boolean | +--ro name? string | +--ro pod? uint32 | +--ro startup-time? uint64 | +--ro miscabled-links* uint32 | +--ro same-plane-tofs* system-id | +--ro fabric-id? uint32 +--ro prefixes | +--ro prefixes* [prefix] | +--ro prefix inet:ip-prefix | +--ro tie-type? enumeration | +--ro metric? uint32 | +--ro tags* uint64 | +--ro monotonic-clock | | +--ro prefix-sequence-type | | +--ro timestamp | | | ieee802-1as-timestamp | | +--ro transaction-id? uint8 | +--ro loopback? boolean | +--ro directly-attached? boolean | +--ro from-link? uint32 | +--ro label? uint32 +--ro key-value +--ro key? binary +--ro value? binary notifications: +---n error-set +--ro tie-level-error | +--ro rift* [name] | +--ro name string | +--ro ties* [originator] | +--ro tie-direction-type? enumeration | +--ro originator system-id | +--ro tie-type? enumeration | +--ro tie-number? uint32 | +--ro seq? uint64 | +--ro origination-time? ieee802-1as-timestamp | +--ro origination-lifetime? uint32 | +--ro remaining-lifetime? uint32 +--ro neighbor-error +--ro rift* [name] +--ro name string +--ro neighbors* [system-id] +--ro level? level +--ro system-id system-id +--ro fabric-id? uint16 +--ro pod? uint32 +--ro proto-major-ver? uint8 +--ro proto-minor-ver? uint16 +--ro sent-offer | +--ro level? level | +--ro not-a-ztp-offer? boolean +--ro received-offer | +--ro level? level | +--ro not-a-ztp-offer? boolean | +--ro best? boolean | +--ro removed-from-consideration? boolean | +--ro removal-reason? string +--ro received-source-addr | +--ro ipv4? inet:ipv4-address-no-zone | +--ro ipv6? inet:ipv6-address-no-zone +--ro link-id-pair* [remote-id] | +--ro local-id? uint32 | +--ro remote-id uint32 | +--ro if-index? uint32 | +--ro if-name? if:interface-ref | +--ro address-families* | iana-rt-types:address-family +--ro cost? uint32 +--ro bandwidth? uint32 +--ro received-link-capabilities | +--ro bfd? boolean | +--ro v4-forwarding-capable? boolean | +--ro mtu-size? uint32 +--ro received-in-lies | +--ro instance-label? uint32 | | {label-switching}? | +--ro you-are-flood-repeater? boolean | +--ro not-a-ztp-offer? boolean | +--ro you-are-sending-too-quickly? boolean +--ro nbr-flood-port? inet:port-number +--ro tx-flood-port? inet:port-number +--ro bfd? enumeration +--ro outer-security-key-id? uint8¶
The configuration data nodes cover node configuration attributes. RIFT configurations require node base information configurations. Some features can be used to enhance protocol, such as BFD [RFC5881], flooding-reducing, community attribute.¶
The state data nodes include node, neighbor, database and kv-store information.¶
Unexpected TIE and neighbor's layer error should be notified.¶
This module references [I-D.ietf-rift-rift], [RFC5881], [RFC6991], [RFC8177], [RFC8294], [RFC8343], [RFC8349], [RFC8505], [IEEE8021AS].¶
<CODE BEGINS> file "ietf-rift@2024-06-18.yang" module ietf-rift { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-rift"; prefix rift; import ietf-inet-types { prefix "inet"; reference "RFC 6991: Common YANG Data Types"; } import ietf-yang-types { prefix "yang"; reference "RFC 6991: Common YANG Data Types"; } import ietf-routing { prefix "rt"; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)"; } import ietf-interfaces { prefix "if"; reference "RFC 8343: A YANG Data Model for Interface Management"; } import ietf-routing-types { prefix "rt-types"; reference "RFC 8294: Common YANG Data Types for the Routing Area"; } import iana-routing-types { prefix "iana-rt-types"; reference "RFC 8294: Common YANG Data Types for the Routing Area"; } import ietf-key-chain { prefix "key-chain"; reference "RFC 8177: YANG Data Model for Key Chains"; } organization "IETF RIFT (Routing In Fat Trees) Working Group"; contact "WG Web: <https://datatracker.ietf.org/wg/rift/> WG List: <mailto:rift@ietf.org> Editor: Zheng Zhang <mailto:zhang.zheng@zte.com.cn> Editor: Yuehua Wei <mailto:wei.yuehua@zte.com.cn> Editor: Shaowen Ma <mailto:mashaowen@gmail.com> Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com> Editor: Bruno Rijsman <mailto:brunorijsman@gmail.com>"; // RFC Ed.: replace XXXX with actual RFC number and remove // this note description "This YANG module defines the generic configuration and operational state for the RIFT protocol common to all vendor implementations. It is intended that the module will be extended by vendors to define vendor-specific RIFT configuration parameters and policies -- for example, route maps or route policies. This YANG data model conforms to the Network Management Datastore Architecture (NMDA) as described in RFC 8342. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here. Copyright (c) 2022 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."; revision 2024-06-18 { description "Initial revision."; reference "RFCXXXX: YANG Data Model for Routing in Fat Trees (RIFT)."; } /* * Features */ feature nonce-delta-adjust { description "Support weak nonce delta adjusting which is used in security in section 6.9."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } feature label-switching { description "Support label switching for instance distinguishing in section 6.8.8."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } feature tie-security { description "Support security function described in section 6.9.3 for the TIE exchange."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } feature link-security { description "Support security function of link described in section 6.9."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } typedef system-id { type string { pattern '[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}'; } description "This type defines RIFT system id using pattern, the system id looks like: 0021.2FFF.FEB5.6E10"; } typedef level { type uint8 { range "0 .. 24"; } default "0"; description "The value of node level. Clos and Fat Tree networks are topologically partially ordered graphs and 'level' denotes the set of nodes at the same height in such a network. Nodes at the top level (i.e., ToF) are at the level with the highest value and count down to the nodes at the bottom level (i.e., leaf) with the lowest value. In RIFT, Level 0 always indicates that a node is a leaf, but does not have to be level 0. Level values can be configured manually or automatically derived via Section 6.7."; } typedef ieee802-1as-timestamp { type uint64; units "seconds"; description "Timestamp per IEEE802.1AS. It is advertised with prefix to achieve mobility as described in section 6.8.4."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees. IEEE8021AS: Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks"; } /* * Identity */ identity rift { base rt:routing-protocol; description "Identity for the RIFT routing protocol."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } /* * Groupings */ grouping address-families { leaf-list address-families { type iana-rt-types:address-family; description "Indication which address families are up on the interface."; } description "Containing address families on the interface."; } grouping hierarchy-indications { leaf hierarchy-indications { type enumeration { enum "leaf-only" { description "The node will never leave the 'bottom of the hierarchy'."; } enum "leaf-only-and-leaf-2-leaf-procedures" { description "This means leaf to leaf."; } enum "top-of-fabric" { description "The node is 'top of fabric'."; } } description "The hierarchy indications of this node."; } description "Flags indicating node configuration in case of ZTP"; } grouping node-capability { leaf proto-minor-ver { type uint16; description "Represents the minor protocol encoding schema version of this node."; } leaf flood-reduction { type boolean; description "If the value is set to 'true', it means that this node enables the flood reduction function."; } container hierarchy-indications { config false; description "The hierarchy-indications of the node."; uses hierarchy-indications; } description "The supported capabilities of this node."; } grouping tie-type { leaf tie-type { type enumeration { enum "illegal" { description "The illegal TIE."; } enum "min-tie-type" { description "The minimum TIE."; } enum "node" { description "The node TIE."; } enum "prefix" { description "The prefix TIE."; } enum "positive-disaggregation-prefix" { description "The positive disaggregation prefix TIE."; } enum "negative-disaggregation-prefix" { description "The negative disaggregation prefix TIE."; } enum "pgp-prefix" { description "The policy guide prefix TIE."; } enum "key-value" { description "The key value TIE."; } enum "external-prefix" { description "The external prefix TIE."; } enum "positive-external-disaggregation-prefix" { description "The positive external disaggregation prefix TIE."; } enum "max-tie-type" { description "The maximum TIE."; } } description "The types of TIE."; } description "The types of TIE"; } grouping prefix-attribute { leaf metric { type uint32; description "The metric of this prefix."; } leaf-list tags { type uint64; description "The tags of this prefix."; } container monotonic-clock { container prefix-sequence-type { leaf timestamp { type ieee802-1as-timestamp; mandatory true; description "The timestamp per 802.1AS can be advertised with the desired prefix North TIEs."; } leaf transaction-id { type uint8; description "As per RFC 8505, a sequence number called a Transaction ID (TID) with a prefix can be advertised."; reference "RFC 8505: Registration Extensions for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Neighbor Discovery"; } description "As described in section 6.8.4, the prefix sequence attribute which can be advertised for mobility."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } description "The monotonic clock for mobile addresses."; } leaf loopback { type boolean; description "If the value is set to 'true', it indicates if the interface is a node loopback. According to section 6.4, the node's loopback address can be injected into North and South Prefix TIEs for node reachability."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf directly-attached { type boolean; description "If the value is set to 'true', it indicates that the prefix is directly attached, i.e. should be routed to even if the node is in overload."; } leaf from-link { type uint32; description "In case of locally originated prefixes, i.e. interface addresses this can describe which link the address belongs to."; } leaf label { type uint32; description "Per prefix significant label."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } description "The attributes of the prefix."; } grouping security { leaf security-type { type enumeration { enum public { description "As described in section 6.9, when using PKI (Public Key Infrastructure), the public and shared key can be used to verify the original packet exchanged with the neighbor."; } enum private { description "As described in section 6.9, when using PKI (Public Key Infrastructure), the private key can be used by the Security fingerprint originating node to create the signature."; } } description "The security type."; } leaf shared { type boolean; description "As described in section 6.9, when using PKI (Public Key Infrastructure), if the key is shared."; } choice auth-key-chain { description "Key chain or explicit key parameter specification"; case auth-key-chain { leaf key-chain { type key-chain:key-chain-ref; description "key-chain name."; reference "RFC 8177: YANG Data Model for Key Chains"; } } case auth-key-explicit { leaf key-id { type uint32; description "Key Identifier. It's used to index different authentication keys."; } leaf key { type string; description "Authentication key. The length of the key may be dependent on the cryptographic algorithm."; } leaf crypto-algorithm { type identityref { base key-chain:crypto-algorithm; } description "Cryptographic algorithm associated with key."; reference "RFC 8177: YANG Data Model for Key Chains"; } } } description "The security parameters."; } grouping base-node-info { leaf level { type level; config false; description "The level of this node."; } leaf system-id { type system-id; mandatory true; description "Each node is identified via a system-id which is 64 bits wide."; } leaf fabric-id { type uint16; description "The optional id of the fabric."; } leaf pod { type uint32 { range "1..max"; } description "The identifier of the Point of Delivery (PoD). A PoD is the self-contained vertical slice of a Clos or Fat Tree network containing normally only leaf nodes (level 0) and their immediate northbound neighbors. It communicates with nodes in other PoDs via the spine. Making this leaf unspecified indicates that the PoD is 'undefined'."; } description "The base information of a node."; } // base-node-info grouping link-capabilities { leaf bfd { type boolean; default "true"; description "If this value is set to 'true', it means that BFD function is enabled on the neighbor."; reference "RFC 5881: Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)"; } leaf v4-forwarding-capable { type boolean; default "true"; description "If this value is set to 'true', it means that the neighbor supports v4 forwarding."; } leaf mtu-size { type uint32; default "1400"; description "MTU of the link."; } description "The features of neighbor."; } // link-capabilities grouping addresses { leaf ipv4 { type inet:ipv4-address-no-zone; description "IPv4 address to be used."; } leaf ipv6 { type inet:ipv6-address-no-zone; description "IPv6 address to be used."; } description "IPv4 and/or IPv6 address to be used."; } grouping lie-elements { leaf instance-label { if-feature label-switching; type uint32; description "As per section 6.8.8, a locally significant, downstream assigned by the neighbor, interface specific label which may be advertised in its LIEs."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf you-are-flood-repeater { type boolean; description "If the neighbor on this link is flooding repeater described in section 6.3.9. When this value is set to 'true', the value can be carried in exchanged packet."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf not-a-ztp-offer { type boolean; description "As described in section 6.7. When this value is set to 'true', the flag can be carried in the LIE packet. When the value received in the LIE from neighbor, it indicates the level on the LIE MUST NOT be used to derive a ZTP level by the receiving node."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf you-are-sending-too-quickly { type boolean; description "Can be optionally set to indicate to neighbor that packet losses are seen on reception based on packet numbers or the rate is too high. The receiver SHOULD temporarily slow down flooding rates. When this value is set to 'true', the flag can be carried in packet."; } description "The elements set in the LIEs."; } // lie-elements grouping link-id-pair { leaf local-id { type uint32; description "The local-id of link connect to this neighbor."; } leaf remote-id { type uint32; description "The remote-id to reach this neighbor."; } leaf if-index { type uint32; description "The local index of this interface."; } leaf if-name { type if:interface-ref; description "The name of this interface."; } uses address-families; description "A pair of local and remote link-id to identify a link between two nodes."; } // link-id-pair grouping neighbor-node { list link-id-pair { key "remote-id"; uses link-id-pair; description "The Multiple parallel links to this neighbor."; } leaf cost { type uint32; description "The cost value advertised by the neighbor."; } leaf bandwidth { type uint32; units "bits"; description "Total bandwith to the neighbor, this will be normally sum of the bandwidths of all the parallel links."; } container received-link-capabilities { uses link-capabilities; description "The link capabilities advertised by the neighbor."; } description "The neighbor information indicated in node TIE."; } // neighbor-node grouping neighbor { leaf proto-major-ver { type uint8; description "Represents protocol encoding schema major version of this neighbor."; } leaf proto-minor-ver { type uint16; description "Represents protocol encoding schema minor version of this neighbor."; } container sent-offer { leaf level { type level; description "The level value."; } leaf not-a-ztp-offer { type boolean; description "If the value is set to 'true', it indicates the level on the LIE MUST NOT be used to derive a ZTP level by the neighbor."; } description "The level sent to the neighbor in case the neighbor needs to be offered."; } container received-offer { leaf level { type level; description "The level value."; } leaf not-a-ztp-offer { type boolean; description "If the value is set to 'true', it indicates the level on the received LIE MUST NOT be used to derive a ZTP level."; } leaf best { type boolean; description "If the value is set to 'true', it means that the level is the best level received from all the neighbors."; } leaf removed-from-consideration { type boolean; description "If the value is set to 'true', it means that the level value is not considered to be used."; } leaf removal-reason { when "derived-from(../removed-from-consideration,'true')" { description "The level value is not considered to be used."; } type string; description "The reason why this value is not considered to be used."; } description "The level offered to the interface from the neighbor. And if the level value is considered to be used."; } container received-source-addr { uses addresses; description "The source address of LIE and TIE packets from the neighbor."; } // received-offer uses neighbor-node; container received-in-lies { uses lie-elements; description "The attributes received from this neighbor."; } leaf nbr-flood-port { type inet:port-number; default "915"; description "The UDP port which is used by the neighbor to flood TIEs."; } leaf tx-flood-port { type inet:port-number; default "915"; description "The UDP port which is used by the node to flood TIEs to the neighbor."; } leaf bfd { type enumeration { enum up { description "The link is protected by established BFD session."; } enum down { description "The link is not protected by established BFD session."; } } description "The link is protected by established BFD session or not."; } leaf outer-security-key-id { type uint8; description "As described in section 6.9.3, the received security key id from the neighbor."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } description "The neighbor information."; } // neighbor grouping link-direction-type { leaf link-direction-type { type enumeration { enum illegal { description "Illegal direction."; } enum south { description "A link to a node one level down."; } enum north { description "A link to a node one level up."; } enum east-west { description "A link to a node in the same level."; } enum max { description "The max value of direction."; } } config false; description "The type of a link."; } description "The type of a link."; } // link-direction-type grouping tie-direction-type { leaf tie-direction-type { type enumeration { enum illegal { description "Illegal direction."; } enum south { description "The direction to a node one level down."; } enum north { description "The direction to a node one level up."; } enum max { description "The max value of direction."; } } config false; description "The direction type of a TIE."; } description "The direction type of a TIE."; } // tie-direction-type grouping tie-header { uses tie-direction-type; leaf originator { type system-id; description "The originator's system-id of this TIE."; } uses tie-type; leaf tie-number { type uint32; description "The number of this TIE"; } leaf seq { type uint64; description "As described in section 6.3.1, the sequence number of a TIE."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf origination-time { type ieee802-1as-timestamp; description "Absolute timestamp when the TIE was generated. This can be used on fabrics with synchronized clock to prevent lifetime modification attacks."; } leaf origination-lifetime { type uint32; units seconds; description "Original lifetime when the TIE was generated. This can be used on fabrics with synchronized clock to prevent lifetime modification attacks."; } leaf remaining-lifetime { type uint32; units seconds; description "The remaining lifetime of the TIE."; } description "TIE is the acronym for 'Topology Information Element'. TIEs are exchanged between RIFT nodes to describe parts of a network such as links and address prefixes. This is the TIE header information."; } // tie-header /* * Data nodes */ augment "/rt:routing/rt:control-plane-protocols" + "/rt:control-plane-protocol" { when "derived-from-or-self(rt:type, 'rift:rift')" { description "This augment is only valid when routing protocol instance type is 'RIFT'."; } description "RIFT ( Routing in Fat Trees ) YANG model."; list rift { key "name"; leaf name { type string; description "The RIFT instance's name."; } uses base-node-info; leaf configured-level { type level; description "The configured level value of this node. This value can be used with 'hierarchy-indications' to indicate the leaf/minimum or top/maximum level value. If the 'hierarchy-indications' is set to 'leaf-only' or 'leaf-only-and-leaf-2-leaf-procedures', this value means the leaf level. And the combination of this value and 'hierarchy-indications' can also be used to indicate the maximum level value of 'top-of-fabric-level'."; } container overload { description "If the overload in TIEs can be set and the timeout value with according type."; leaf overload { type boolean; description "If the value is set to 'true', it means that the overload bit in TIEs can be set."; } choice timeout-type { description "The value of timeout timer for overloading. This makes sense when overload is set to 'TRUE'."; case on-startup { leaf on-startup-timeout { type rt-types:timer-value-seconds16; description "Node goes into overload until this timer expires when starting up."; } } case immediate { leaf immediate-timeout { type rt-types:timer-value-seconds16; description "Set overload and remove after the timeout expired."; } } } } leaf proto-major-ver { type uint8; config false; mandatory true; description "Represents protocol encoding schema major version."; } leaf proto-minor-ver { type uint16; config false; mandatory true; description "Represents protocol encoding schema minor version."; } uses hierarchy-indications; leaf flood-reduction { type boolean; description "If the node supports flood reduction function defined in section 6.3.8. If this value is set to 'true', it means that the flood reduction function is enabled."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf nonce-increasing-interval { type uint16; units seconds; description "The configurable nonce increasing interval."; } leaf maximum-nonce-delta { if-feature nonce-delta-adjust; type uint8 { range "1..5"; } description "The configurable valid nonce delta value used for security. It is used as vulnerability window defined in section 6.9.4. If the nonces in received packet exceeds the range indicated by this value, the packet MUST be discarded."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf adjusted-lifetime { type rt-types:timer-value-seconds16; units seconds; description "The adjusted lifetime may affect the TIE stability. Be careful to change this parameter. This should be prohibited less than 2*purge-lifetime."; } container rx-lie-multicast-addr { leaf ipv4 { type inet:ipv4-address; default "224.0.0.121"; description "The configurable LIE receiving IPv4 multicast address. Different multicast addresses can be used for receiving and sending."; } leaf ipv6 { type inet:ipv6-address; default "FF02::A1F7"; description "The configurable LIE receiving IPv6 multicast address. Different multicast addresses can be used for receiving and sending."; } description "The configurable LIE receiving IPv4/IPv6 multicast address. Different multicast addresses can be used for receiving and sending."; } container tx-lie-multicast-addr { leaf ipv4 { type inet:ipv4-address; description "The configurable LIE sending IPv4 multicast address. Different multicast addresses can be used for receiving and sending."; } leaf ipv6 { type inet:ipv6-address; description "The configurable LIE sending IPv6 multicast address. Different multicast addresses can be used for receiving and sending."; } description "The configurable LIE sending IPv4/IPv6 multicast address. Different multicast addresses can be used for receiving and sending."; } leaf lie-tx-port { type inet:port-number; default "914"; description "The UDP port of LIE packet sending. The default port number is 914. The value can be set to other value associated with different RIFT instance."; } container global-link-capabilities { uses link-capabilities; description "The node default link capabilities. It can be overwrite by the configuration underneath interface and neighbor."; } leaf tide-generation-interval { type rt-types:timer-value-seconds16; units seconds; description "The TIDE generation interval."; } list tie-security { if-feature tie-security; key "security-type"; uses security; description "As described in section 6.9.3, the security function used for the TIE exchange."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf algorithm-type { type enumeration { enum spf { description "The algorithm is SPF."; } enum all-path { description "The algorithm is all-path."; } } description "The possible algorithm types."; } leaf instance-label { if-feature label-switching; type uint32; description "The configured value can be used during the LIE advertisement with neighbors as described in section 6.8.8."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } container hal { config false; leaf hal-value { type level; description "The highest defined level value seen from all valid level offers received."; } leaf-list system-ids{ type system-id; description "The node's system-id of the offered level comes from."; } description "The highest defined level and the offered nodes set."; } leaf-list miscabled-links { type uint32; config false; description "List of miscabled links."; } leaf ttl { type uint8 { range "1 | 255"; } default "1"; description "The IPv4 TTL or IPv6 HL used for LIE and TIE sending/receiving."; } leaf maximum-clock-delta { type ieee802-1as-timestamp; description "As described in section 6.8.4, the maximum drift for the timestamp comparing."; } list interfaces { key "name"; leaf link-id { type uint32; config false; description "The local id of this interface."; } leaf name { type if:interface-ref; description "The interface's name."; } leaf cost { type uint32; description "The cost from this interface to the neighbor."; } leaf rx-flood-port { type inet:port-number; default "915"; description "The UDP port which is used to receive flooded TIEs. The default port number is 915. The value can be set to other value associated with different RIFT instance."; } leaf holdtime { type rt-types:timer-value-seconds16; units seconds; default "3"; description "The holding time of LIE."; } uses address-families; container advertised-source-addr { uses addresses; description "The address used in the advertised LIE and TIE packets."; } uses link-direction-type; leaf broadcast-capable { type boolean; description "If LIE can be received by broadcast address as decribed in section 6.2."; } container security { if-feature link-security; uses security; description "As described in section 6.9.3, the security function used for this interface."; reference "I-D.ietf-rift-rift: RIFT: Routing in Fat Trees"; } leaf security-checking { type enumeration { enum "no-checking" { description "The security envelop does not be checked."; } enum "permissive" { description "The security envelop checking is permissive."; } enum "loose" { description "The security envelop checking is loose."; } enum "strict" { description "The security envelop checking is strict."; } } description "The possible security checking types. Only one type can be set at the same time."; } leaf was-the-last-lie-accepted { type boolean; config false; description "If the value is set to 'true', it means that the most recently received LIE was accepted. If the LIE was rejected, the neighbor error notifications should be used to find the reason."; } leaf last-lie-reject-reason { type string; config false; description "Description for the reject reason of the last LIE."; } container advertised-in-lies { config false; uses lie-elements; description "The attributes advertised in the LIEs from this interface."; } container link-capabilities { uses link-capabilities; description "The interface's link capabilities."; } leaf state { type enumeration { enum "one-way" { description "The initial state."; } enum "two-way" { description "Valid LIE received but not a Three Way LIE."; } enum "three-way" { description "Valid Three Way LIE received."; } enum "multiple-neighbors-wait" { description "More than two neighbors found in the same link."; } } config false; mandatory true; description "The LIE finite state machine described in section 6.2.1."; } leaf number-of-flaps { type uint32; config false; description "The number of interface state flaps."; } leaf last-state-change { type yang:date-and-time; config false; description "Time duration in the current state."; } leaf last-up { type yang:date-and-time; config false; description "The last time of up."; } leaf last-down { type yang:date-and-time; config false; description "The last time of down."; } list neighbors { key "system-id"; config false; uses base-node-info; uses neighbor; description "The neighbor's information."; } description "The interface information on this node."; } // list interface container database { config false; list ties { key "tie-direction-type originator tie-type tie-number"; description "A list of TIEs (Topology Information Elements)."; uses tie-header; container node { leaf level { type level; config false; description "The level of this node."; } list neighbors { key "system-id"; uses base-node-info; uses neighbor-node; description "The node TIE information of a neighbor."; } uses node-capability; leaf overload-flag { type boolean; description "If the value is set to 'true', it means that the overload bit in TIEs is set."; } leaf name { type string; description "The name of this node. It won't be used as the key of node, just used for description."; } leaf pod { type uint32; description "Point of Delivery. The self-contained vertical slice of a Clos or Fat Tree network containing normally only level 0 and level 1 nodes. It communicates with nodes in other PoDs via the spine. We number PoDs to distinguish them and use PoD #0 to denote 'undefined' PoD."; } leaf startup-time { type uint64; description "Startup time of the node."; } leaf-list miscabled-links { type uint32; config false; description "List of miscabled links."; } leaf-list same-plane-tofs { type system-id; config false; description "ToFs in the same plane. Only carried by ToF. Multiple Node TIEs can carry disjoint sets of ToFs which MUST be joined to form a single set."; } leaf fabric-id { type uint32; config false; description "The optional ID of the Fabric configured."; } description "The node element information in this TIE."; } // node container prefixes { description "The prefix element information in this TIE."; list prefixes { key "prefix"; leaf prefix { type inet:ip-prefix; description "The prefix information."; } uses tie-type; uses prefix-attribute; description "The prefix set information."; } } container key-value { leaf key { type binary; description "The type of key value combination."; } leaf value { type binary; description "The value of key value combination."; } description "The information used to distinguish a Key/Value pair. When the type of kv is set to 'node', node-element is making sense. When the type of kv is set to other values except 'node', prefix-info is making sense."; } // kv-store } // ties description "The TIEs information in database."; }// container database description "RIFT configuration and state data."; }//rift }//augment /* * Notifications */ notification error-set { description "The errors notification of RIFT."; container tie-level-error { description "The TIE errors notification of RIFT."; list rift { key "name"; leaf name { type string; description "The RIFT instance's name."; } list ties { key "originator"; uses tie-header; description "The level is undefined in the LIEs."; } description "The TIE errors set."; } } container neighbor-error { description "The neighbor errors notification of RIFT."; list rift { key "name"; leaf name { type string; description "The RIFT instance's name."; } list neighbors { key "system-id"; uses base-node-info; uses neighbor; description "The information of a neighbor."; } description "The neighbor errors set."; } } } } <CODE ENDS>¶
The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].¶
The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.¶
There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. Writable data node represent configuration of each instance, node, interface, etc. These correspond to the following schema node:¶
/rift¶
Modifying the configuration may cause all the RIFT neighborship to be rebuilt. For example, the configuration changing of configured-level or system-id, will lead to all the neighbor connections of this node rebuilt. The incorrect modification of authentication, except for the neighbor connection broken, will lead to the permanent connection broken. The modification of interface, will lead to the neighbor state changing. In general, unauthorized modification of most RIFT configurations will pose there own set of security risks and the "Security Considerations" in the respective reference RFCs should be consulted.¶
Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:¶
The exposure of the database will expose the detailed topology of the network. Network operators may consider their topologies to be sensitive confidential data.¶
For RIFT authentication, configuration is supported via the specification of key-chains [RFC8177] or the direct specification of key and authentication algorithm. Hence, authentication configuration inherits the security considerations of [RFC8177]. This includes the considerations with respect to the local storage and handling of authentication keys.¶
The actual authentication key data (whether locally specified or part of a key chain) is sensitive and needs to be kept secret from unauthorized parties; compromise of the key data would allow an attacker to forge RIFT packet that would be accepted as authentic, potentially compromising the entire domain.¶
RFC Ed.: Please replace all occurrences of 'XXXX' with the actual RFC number (and remove this note).¶
This document registers a URI in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made:¶
URI: urn:ietf:params:xml:ns:yang:ietf-rift¶
Registrant Contact: The IESG¶
XML: N/A, the requested URI is an XML namespace.¶
This document also requests one new YANG module name in the YANG Module Names registry [RFC6020] with the following suggestion:¶
name: ietf-rift¶
namespace: urn:ietf:params:xml:ns:yang:ietf-rift¶
prefix: rift¶
reference: RFC XXXX¶
The authors would like to thank Tony Przygienda, Benchong Xu (xu.benchong@zte.com.cn), Tom Petch for their review, valuable comments and suggestions.¶