Internet-Draft | PCE VN Association | April 2022 |
Lee, et al. | Expires 17 October 2022 | [Page] |
This document describes how to extend the Path Computation Element (PCE) Communication Protocol (PCEP) association mechanism introduced by the PCEP Association Group specification, to further associate sets of Label Switching Paths (LSPs) with a higher-level structure such as a virtual network (VN) requested by clients or applications. This extended association mechanism can be used to facilitate control of virtual network using the PCE architecture.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 17 October 2022.¶
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
The Path Computation Element communication Protocol (PCEP) provides mechanisms for Path Computation Elements (PCEs) to perform path computations in response to requests from Path Computation Clients' (PCCs) [RFC5440].¶
[RFC8051] describes general considerations for a stateful PCE deployment and examines its applicability and benefits, as well as its challenges and limitations through a number of use cases. [RFC8231] describes a set of extensions to PCEP to provide stateful control. For its computations, a stateful PCE has access to not only the information carried by the network's Interior Gateway Protocol (IGP), but also the set of active paths and their reserved resources. The additional state allows the PCE to compute constrained paths while considering individual Label Switching Paths (LSPs) and their interactions.¶
[RFC8281] describes the setup, maintenance and teardown of PCE-initiated LSPs under the stateful PCE model.¶
[RFC8697] introduces a generic mechanism to create a grouping of LSPs. This grouping can then be used to define associations between sets of LSPs or between a set of LSPs and a set of attributes.¶
[RFC8453] introduces a framework for Abstraction and Control of TE Networks (ACTN) and describes various Virtual Network (VN) operations initiated by a customer or application. A VN is a customer view of the TE network. Depending on the agreement between client and provider, various VN operations and VN views are possible.¶
[RFC8637] examines the PCE and ACTN architectures and describes how the PCE architecture is applicable to ACTN. [RFC6805] and [RFC8751] describes a hierarchy of stateful PCEs with Parent PCE coordinating multi-domain path computation function between Child PCEs, and thus making it the base for PCE applicability for ACTN. In this text child PCE would be same as Provisioning Network Controller (PNC), and the parent PCE as Multi-domain Service Coordinator (MDSC) [RFC8453].¶
In this context, there is a need to associate a set of LSPs with a VN "construct" to facilitate VN operations in the PCE architecture. This association allows a PCE to identify which LSPs belong to a certain VN. The PCE could then use this association to optimize all LSPs belonging to the VN at once. The PCE could further take VN-specific actions on the LSPs, such as relaxation of constraints, policy actions, setting default behavior, etc.¶
This document specifies a PCEP extension to associate a set of LSPs based on Virtual Network (VN) (or customer).¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
As per [RFC8697], LSPs are associated with other LSPs with which they interact by adding them to a common association group.¶
An association group based on VN is useful for various optimizations that should be applied by considering all the LSPs in the association. This includes, but is not limited to -¶
In this document we define a new association group called the VN Association Group (VNAG). This grouping is used to define the association between a set of LSPs and a virtual network.¶
The Association Object contains a field to identify the type of association, and this document defines a new Association Type value of TBD1 to indicate that the association is a "VN Association". The Association Identifier in the Association Object is the VNAG Identifier and is handled in the same way as the generic association identifier defined in [RFC8697] .¶
In this document, "VNAG object" refers to an Association Object with the Association type set to "VN Association".¶
Local polices on the PCE define the computational and optimization behavior for the LSPs in the VN. An LSP MUST NOT belong to more than one VNAG. If an implementation encounters more than one VNAG object in a PCEP message, it MUST process the first occurrence and it MUST ignore the others.¶
[RFC8697] specifies the mechanism by which a PCEP speaker can advertise which association types it supports. This is done using the ASSOC-Type-List TLV carried within an OPEN object. A PCEP speaker MUST include the VN Association Type (TBD1) in the ASSOC-Type-List TLV before using the VNAG object in a PCEP message.¶
The Association IDs (VNAG IDs) for this Association Type are dynamic in nature and created by the Parent PCE (MDSC) for the LSPs belonging to the same VN or customer. Operator configuration of VNAG IDs is not supported so there is no need for an Operator-Configured Association Range to be set. Thus, the VN Association Type (TBD1) MUST NOT be present in the Operator-Configured Association Range TLV if that TLV is present in the OPEN object. If an implementation encounters the VN Association Type in an Operator-Configured Association Range TLV, it MUST ignore the associated Start-Assoc-ID and Range values.¶
This association is also useful in a PCEP session between a parent PCE (MDSC) and a child PCE (PNC). When computing the path, the child PCE (PNC) refers to the VN association in the request from the parent PCE (MDSC) and maps the VN to the associated LSPs and network resources. From the perspective of Parent PCE, it receives a virtual network creation request by its client, with the VN uniquely identified by an Association ID in VNAG as well as the Virtual Network identifier. This VN may comprise multiple LSPs in the network in a single domain or across multiple domains. Parent PCE sends a PCInitiate Message with this association information in the VNAG Object. This in effect binds an LSP that is to be instantiated at the child PCE with the VN. The VN association information could be included as a part of the response as well. Figure 1 shows an example of a typical VN operation using PCEP. It is worth noting that in a multi-domain scenario, the different domains are controlled by different child PCEs. In order to set up the cross-domain tunnel, multiple segments need to be stitched, by the border nodes in each domain who receives the instruction from their child PCE (PNC).¶
****** ..........*MDSC*.............................. . ****** .. MPI . . . . PCEP . . . . PCInitiate LSPx . . . . with VNAG = 10 . . . . . . . . . . . . . v v v . ****** ****** ****** . *PNC1* *PNC2* *PNC4* . ****** ****** ****** . +---------------+ +---------------+ +---------------+ . |A |----| |----| C| . | | | | | | . |DOMAIN 1 |----|DOMAIN 2 |----|DOMAIN 4 | . +------------B13+ +---------------+ +B43------------+ . / . ****** / . *PNC3*<............/..................... ****** / +---------------+/ B31 B34 | | |DOMAIN 3 B| +---------------+ MDSC -> Parent PCE PNC -> Child PCE MPI -> PCEP Figure 1: Example of VN operations in H-PCE Architecture¶
Whenever changes occur with the instantiated LSP in a domain network, the domain child PCE reports the changes using a PCRpt Message in which the VNAG Object indicates the relationship between the LSP and the VN.¶
Whenever an update occurs with VNs in the Parent PCE (via the client's request), the parent PCE sends an PCUpd Message to inform each affected child PCE of this change.¶
The format of VNAG object is as per the ASSOCIATION object [RFC8697].¶
This document defines one new mandatory TLV "VIRTUAL-NETWORK-TLV". Optionally, the new TLV can be jointly used with the existing "VENDOR-INFORMATION-TLV" specified in [RFC7470] as described below:¶
The format of VIRTUAL-NETWORK-TLV is as follows.¶
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type=TBD2 | Length (variable) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | // Virtual Network Identifier // | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: The VIRTUAL-NETWORK-TLV formats¶
Type: TBD2 (to be allocated by IANA)¶
Length: Variable Length, which covers all the Virtual Network Identifiers.¶
Virtual Network Identifier (variable): a symbolic name for the VN that is unique in this TLV. It SHOULD be a string of printable ASCII characters, without a NULL terminator. The Virtual Netowrk Identifier is a human-readable string that identifies a VN and can be specified with the association information. An implementation could use the Virtual Network Identifier to maintain a mapping to the VN association group and the LSPs associated with the VN. The Virtual Network Identifier MAY be specified by an operator or auto-generated by the PCEP speaker.¶
The VIRTUAL-NETWORK-TLV MUST be included in VNAG object. If a PCEP speaker receives the VNAG object without the VIRTUAL-NETWORK-TLV, it MUST send a PCErr message with Error-Type=6 (mandatory object missing) and Error-Value=TBD3 (VIRTUAL-NETWORK-TLV missing) and close the session.¶
The format of VENDOR-INFORMATION-TLV is defined in [RFC7470].¶
[Note to the RFC Editor - remove this section before publication, as well as remove the reference to RFC 7942.]¶
This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist.¶
According to [RFC7942], "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit".¶
The PCE function was developed in the ONOS open source platform. This extension was implemented on a private version as a proof of concept to ACTN.¶
This document defines one new type for association, which do not add any new security concerns beyond those discussed in [RFC5440], [RFC8231] and [RFC8697] in itself.¶
Some deployments may find the Virtual Network Name and the VN associations as extra sensitive; and thus should employ suitable PCEP security mechanisms like TCP-AO [RFC5925] or [RFC8253].¶
IANA is requested to make the assignment of a new value for the sub-registry "ASSOCIATION Type Field" (request to be created in [RFC8697]), as follows:¶
Value Name Reference TBD1 VN Association Type [This I.D.]¶
IANA is requested to make the assignment of a new value for the existing "PCEP TLV Type Indicators" registry as follows:¶
Value Name Reference TBD2 VIRTUAL-NETWORK-TLV [This I.D.]¶
IANA is requested to allocate new error value within the "PCEP-ERROR Object Error Types and Values" sub-registry of the PCEP Numbers registry, as follows:¶
Error-Type Meaning 6 Mandatory Object missing Error-value=TBD3: VIRTUAL-NETWORK TLV missing [This I.D.]¶
An operator MUST be allowed to mark LSPs that belong to the same VN. This could also be done automatically based on the VN configuration.¶
The PCEP YANG module [I-D.ietf-pce-pcep-yang] should support the association between LSPs including VN association.¶
Mechanisms defined in this document do not imply any new liveness detection and monitoring requirements in addition to those already listed in [RFC5440].¶
Mechanisms defined in this document do not imply any new operation verification requirements in addition to those already listed in [RFC5440].¶
Mechanisms defined in this document do not imply any new requirements on other protocols.¶
Mechanisms defined in this document do not have any impact on network operations in addition to those already listed in [RFC5440].¶
Dhruv Dhody Huawei Technologies Divyashree Technopark, Whitefield Bangalore, Karnataka 560066 India Email: dhruv.ietf@gmail.com Qin Wu Huawei Technologies China Email: bill.wu@huawei.com Xian Zhang Huawei Technologies China Email: zhang.xian@huawei.com¶