PCE Working Group                                           M. Koldychev
Internet-Draft                                              S. Sivabalan
Updates: 8231 (if approved)                            Ciena Corporation
Intended status: Standards Track                                S. Sidor
Expires: 6 October 2025                              Cisco Systems, Inc.
                                                                C. Barth
                                                  Juniper Networks, Inc.
                                                                 S. Peng
                                                     Huawei Technologies
                                                              H. Bidgoli
                                                                   Nokia
                                                            4 April 2025


 Path Computation Element Communication Protocol (PCEP) Extensions for
              Segment Routing (SR) Policy Candidate Paths
              draft-ietf-pce-segment-routing-policy-cp-27

Abstract

   A Segment Routing (SR) Policy is an ordered list of instructions,
   called "segments" that represent a source-routed policy.  Packet
   flows are steered into an SR Policy on a node where it is
   instantiated.  An SR Policy is made of one or more candidate paths.

   This document specifies the Path Computation Element Communication
   Protocol (PCEP) extension to signal candidate paths of an SR Policy.
   Additionally, this document updates RFC 8231 to allow delegation and
   setup of an SR Label Switched Path (LSP), without using the path
   computation request and reply messages.  This document is applicable
   to both Segment Routing over MPLS (SR-MPLS) and Segment Routing over
   IPv6 (SRv6).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."




Koldychev, et al.        Expires 6 October 2025                 [Page 1]

Internet-Draft               PCEP SR Policy                   April 2025


   This Internet-Draft will expire on 6 October 2025.

Copyright Notice

   Copyright (c) 2025 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   4
   2.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   4
   3.  Overview  . . . . . . . . . . . . . . . . . . . . . . . . . .   5
   4.  SR Policy Association (SRPA)  . . . . . . . . . . . . . . . .   6
     4.1.  SR Policy Identifier  . . . . . . . . . . . . . . . . . .   7
     4.2.  SR Policy Candidate Path Identifier . . . . . . . . . . .   7
     4.3.  SR Policy Candidate Path Attributes . . . . . . . . . . .   7
     4.4.  Association Parameters  . . . . . . . . . . . . . . . . .   8
     4.5.  Association Information . . . . . . . . . . . . . . . . .   9
       4.5.1.  SR Policy Name TLV  . . . . . . . . . . . . . . . . .  10
       4.5.2.  SR Policy Candidate Path Identifier TLV . . . . . . .  10
       4.5.3.  SR Policy Candidate Path Name TLV . . . . . . . . . .  12
       4.5.4.  SR Policy Candidate Path Preference TLV . . . . . . .  12
   5.  SR Policy Signaling Extensions  . . . . . . . . . . . . . . .  13
     5.1.  SR Policy Capability TLV  . . . . . . . . . . . . . . . .  13
     5.2.  LSP Object TLVs . . . . . . . . . . . . . . . . . . . . .  15
       5.2.1.  Computation Priority TLV  . . . . . . . . . . . . . .  15
       5.2.2.  Explicit Null Label Policy (ENLP) TLV . . . . . . . .  15
       5.2.3.  Invalidation TLV  . . . . . . . . . . . . . . . . . .  16
         5.2.3.1.  Drop-upon-invalid applies to SR Policy  . . . . .  18
     5.3.  Update to RFC 8231  . . . . . . . . . . . . . . . . . . .  18
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  19
     6.1.  Association Type  . . . . . . . . . . . . . . . . . . . .  19
     6.2.  PCEP TLV Type Indicators  . . . . . . . . . . . . . . . .  19
     6.3.  PCEP Errors . . . . . . . . . . . . . . . . . . . . . . .  20
     6.4.  TE-PATH-BINDING TLV Flag field  . . . . . . . . . . . . .  21
     6.5.  SR Policy Invalidation Operational State  . . . . . . . .  21
     6.6.  SR Policy Invalidation Configuration State  . . . . . . .  22
     6.7.  SR Policy Capability TLV Flag field . . . . . . . . . . .  22



Koldychev, et al.        Expires 6 October 2025                 [Page 2]

Internet-Draft               PCEP SR Policy                   April 2025


   7.  Implementation Status . . . . . . . . . . . . . . . . . . . .  23
     7.1.  Cisco . . . . . . . . . . . . . . . . . . . . . . . . . .  23
     7.2.  Juniper . . . . . . . . . . . . . . . . . . . . . . . . .  24
   8.  Security Considerations . . . . . . . . . . . . . . . . . . .  24
   9.  Manageability Considerations  . . . . . . . . . . . . . . . .  24
     9.1.  Control of Function and Policy  . . . . . . . . . . . . .  25
     9.2.  Information and Data Models . . . . . . . . . . . . . . .  25
     9.3.  Liveness Detection and Monitoring . . . . . . . . . . . .  25
     9.4.  Verify Correct Operations . . . . . . . . . . . . . . . .  25
     9.5.  Requirements On Other Protocols . . . . . . . . . . . . .  25
     9.6.  Impact On Network Operations  . . . . . . . . . . . . . .  25
   10. Acknowledgement . . . . . . . . . . . . . . . . . . . . . . .  26
   11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  26
     11.1.  Normative References . . . . . . . . . . . . . . . . . .  26
     11.2.  Informative References . . . . . . . . . . . . . . . . .  28
   Appendix A.  Contributors . . . . . . . . . . . . . . . . . . . .  29
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  30

1.  Introduction

   Segment Routing (SR) Policy Architecture [RFC9256] details the
   concepts of Segment Routing (SR) Policy [RFC8402] and approaches to
   steering traffic into an SR Policy.

   Path Computation Element Communication Protocol (PCEP) Extensions for
   Segment Routing [RFC8664] specifies extensions to the PCEP that allow
   a stateful Path Computation Element (PCE) to compute and initiate
   Traffic Engineering (TE) paths, as well as a Path Computation Client
   (PCC) to request a path subject to certain constraints and
   optimization criteria in SR domain.  Although PCEP extensions
   introduced in [RFC8664] enables the creation of SR-TE paths, these do
   not constitute SR Policies as defined in [RFC9256] and therefore lack
   support for:

   *  Association of SR Policy Candidate Paths signaled via PCEP with
      Candidate Paths of the same SR Policy signaled via other sources
      (e.g., local configuration or BGP).

   *  Association of SR Policy with an intent via color, enabling
      headend-based steering of BGP service routes over SR Policies
      provisioned via PCEP.

   PCEP Extensions for establishing relationships between sets of Label
   Switched Paths (LSPs) [RFC8697] introduces a generic mechanism to
   create a grouping of LSPs which is called an Association.






Koldychev, et al.        Expires 6 October 2025                 [Page 3]

Internet-Draft               PCEP SR Policy                   April 2025


   An SR Policy is associated with one or more candidate paths.  A
   candidate path is the unit for signaling of an SR Policy to a headend
   as described in Section 2.2 of [RFC9256].  This document extends
   [RFC8664] to support signaling SR Policy Candidate Paths as LSPs and
   to signal Candidate Path membership in an SR Policy by means of the
   Association mechanism.  A PCEP Association corresponds to a SR Policy
   and a LSP corresponds to a Candidate Path.  The unit of signaling in
   PCEP is the LSP, thus all the information related to SR Policy is
   carried at the Candidate Path level.

   Also, this document updates Section 5.8.2 of [RFC8231], making the
   use of Path Computation Request (PCReq) and Path Computation Reply
   (PCRep) messages optional for LSPs setup using Path Setup Type 1
   (Segment Routing) [RFC8664] and Path Setup Type 3 (SRv6) [RFC9603]
   with the aim of reducing the PCEP message exchanges and simplifying
   implementation.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Terminology

   This document uses the following terms defined in [RFC5440]: ERO,
   PCC, PCE, PCEP Peer, and PCEP speaker.

   This document uses the following term defined in [RFC3031]: LSP.

   This document uses the following term defined in [RFC9552]: BGP-LS.

   The following terms are used in this document:

   Endpoint:  The IPv4 or IPv6 endpoint address of an SR Policy, as
      described in Section 2.1 of [RFC9256].

   Color:  The 32-bit color of an SR Policy, as described in Section 2.1
      of [RFC9256].

   Protocol-Origin:  The protocol that was used to create a Candidate
      Path, as described in Section 2.3 of [RFC9256].

   Originator:  A device that created a Candidate Path, as described in
      Section 2.4 of [RFC9256].




Koldychev, et al.        Expires 6 October 2025                 [Page 4]

Internet-Draft               PCEP SR Policy                   April 2025


   Discriminator:  Distinguishes Candidate Paths created by the same
      device, as described in Section 2.5 of [RFC9256].

   Association Parameters:  As described in [RFC8697], refers to the key
      data that uniquely identifies an Association.

   Association Information:  As described in Section 6.1.4 of [RFC8697],
      refers to information related to Association Type.

   SR Policy LSP:  An LSP setup using Path Setup Type [RFC8408] 1
      (Segment Routing) or 3 (SRv6).

   SR Policy Association:  A new association type used to group
      candidate paths belonging to same SR Policy.  Depending on the
      discussion context, it can refer to the PCEP ASSOCIATION object of
      SR Policy type or to a group of LSPs that belong to the
      association.

   The base PCEP specification [RFC4655] originally defined the use of
   the PCE architecture for MPLS and GMPLS networks with LSPs
   instantiated using the RSVP-TE signaling protocol.  Over time,
   support for additional path setup types, such as SRv6, has been
   introduced [RFC9603].  The term "LSP" is used extensively in PCEP
   specifications and, in the context of this document, refers to a
   Candidate Path within an SR Policy, which may be an SRv6 path (still
   represented using the LSP Object as specified in [RFC8231].

3.  Overview

   The SR Policy is represented by a new type of PCEP Association,
   called the SR Policy Association (SRPA) (see Section 4).  The SR
   Policy Candidate Paths of specific SR Policy are the LSPs within the
   same SRPA.  The extensions in this document specify the encoding of a
   single segment list within an SR Policy Candidate Path.  Encoding of
   multiple segment lists is outside the scope of this document and
   specified in [I-D.ietf-pce-multipath].

   An SRPA carries three pieces of information: SR Policy Identifier, SR
   Policy Candidate Path Identifier, and SR Policy Candidate Path
   Attribute(s).

   This document also specifies some additional information that is not
   encoded as part of an SRPA: Computation Priority of the LSP, Explicit
   Null Label Policy for the unlabeled IP packets and Drop-upon-invalid
   behavior for traffic steering when the LSP is operationally down (see
   Section 5).





Koldychev, et al.        Expires 6 October 2025                 [Page 5]

Internet-Draft               PCEP SR Policy                   April 2025


4.  SR Policy Association (SRPA)

   Per [RFC8697], LSPs are associated with other LSPs with which they
   interact by adding them to a common association group.  An
   association group is uniquely identified by the combination of the
   following fields in the ASSOCIATION object (Section 6.1 of
   [RFC8697]): Association Type, Association ID, Association Source, and
   (if present) Global Association Source, or Extended Association ID.
   These fields are referred to as Association Parameters (Section 4.4).

   [RFC8697] specifies the ASSOCIATION Object with two Object-Types for
   IPv4 and IPv6 which includes the field "Association Type".  This
   document defines a new Association type (6) "SR Policy Association"
   for SRPA.

   [RFC8697] specifies the mechanism for the capability advertisement of
   the Association Types supported by a PCEP speaker by defining an
   ASSOC-Type-List TLV to be carried within an OPEN object.  This
   capability exchange for the SR Policy Association Type MUST be done
   before using the SRPA.  To that aim, a PCEP speaker MUST include the
   SRPA Type (6) in the ASSOC-Type-List TLV and MUST receive the same
   from the PCEP peer before using the SRPA (Section 6.1).

   SRPA MUST be assigned for all SR Policy LSPs by PCEP speaker
   originating the LSP if capability was advertised by both PCEP
   speakers.  If the above condition is not satisfied, then the
   receiving PCEP speaker MUST send a PCErr message with Error-Type = 6
   "Mandatory Object Missing", Error-Value = TBD1 "Missing SR Policy
   Association".

   A given LSP MUST belong to at most one SRPA, since an SR Policy
   Candidate Path cannot belong to multiple SR Policies.  If a PCEP
   speaker receives a PCEP message requesting to join more than one SRPA
   for the same LSP, then the PCEP speaker MUST send a PCErr message
   with Error-Type = 26 "Association Error", Error-Value = 7 "Cannot
   join the association group".

   The existing behavior for the use of Binding SID with SR Policy is
   already documented in [RFC9604].  If BSID value allocation failed,
   because of conflict with BSID used by another policy, then PCEP peer
   MUST send a PCErr message with Error-Type = 32 "Binding label/SID
   failure" and Error-value = 2 "Unable to allocate the specified
   binding value".








Koldychev, et al.        Expires 6 October 2025                 [Page 6]

Internet-Draft               PCEP SR Policy                   April 2025


4.1.  SR Policy Identifier

   SR Policy Identifier uniquely identifies an SR Policy [RFC9256]
   within the SR domain.  SR Policy Identifier is assigned by PCEP peer
   originating the LSP and MUST be uniform across all the PCEP sessions.
   Candidate Paths within an SR Policy MUST carry the same SR Policy
   Identifiers in their SRPAs.  Candidate Paths within an SR Policy MUST
   NOT change their SR Policy Identifiers for the lifetime of the PCEP
   session.  If the above conditions are not satisfied, the receiving
   PCEP speaker MUST send a PCEP Error (PCErr) message with Error-Type =
   26 "Association Error" and Error Value = 20 "SR Policy Identifier
   Mismatch".  SR Policy Identifier consists of:

   *  Headend router where the SR Policy originates.

   *  Color of the SR Policy ([RFC9256], Section 2.1).

   *  Endpoint of the SR Policy ([RFC9256], Section 2.1).

4.2.  SR Policy Candidate Path Identifier

   SR Policy Candidate Path Identifier uniquely identifies the SR Policy
   Candidate Path within the context of an SR Policy.  SR Policy
   Candidate Path Identifier is assigned by PCEP peer originating the
   LSP.  Candidate Paths within an SR Policy MUST NOT change their SR
   Policy Candidate Path Identifiers for the lifetime of the PCEP
   session.  Two or more Candidate Paths within an SR Policy MUST NOT
   carry same SR Policy Candidate Path Identifiers in their SRPAs.  If
   the above conditions are not satisfied, the PCEP speaker MUST send a
   PCErr message with Error-Type = 26 "Association Error" and Error
   Value = 21 "SR Policy Candidate Path Identifier Mismatch".  SR Policy
   Candidate Path Identifier consists of:

   *  Protocol Origin ([RFC9256], Section 2.3).

   *  Originator ([RFC9256], Section 2.4).

   *  Discriminator ([RFC9256], Section 2.5).

4.3.  SR Policy Candidate Path Attributes

   SR Policy Candidate Path Attributes carry optional, non-key
   information about a Candidate Path and MAY change during the lifetime
   of an LSP.  SR Policy Candidate Path Attributes consists of:

   *  Candidate Path preference ([RFC9256], Section 2.7).

   *  Candidate Path name ([RFC9256], Section 2.6).



Koldychev, et al.        Expires 6 October 2025                 [Page 7]

Internet-Draft               PCEP SR Policy                   April 2025


   *  SR Policy name ([RFC9256], Section 2.1).

4.4.  Association Parameters

   Per Section 2.1 of [RFC9256], an SR Policy is identified through the
   <headend, color, endpoint> tuple.

   The Association Parameters consists of:

   *  Association Type: Set to 6 "SR Policy Association".

   *  Association Source (IPv4/IPv6): Set to the headend value of the SR
      Policy, as defined in [RFC9256] Section 2.1.

   *  Association ID (16-bit): Always set to the numeric value "1".

   *  Extended Association ID TLV: Mandatory TLV for SR Policy
      Association.  Encodes the Color and Endpoint of the SR Policy
      (Figure 1).

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Type = 31           |       Length = 8 or 20        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             Color                             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                           Endpoint                            ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 1: Extended Association ID TLV Format

   Type: Extended Association ID TLV, type = 31 [RFC8697].

   Length: 8 octets if IPv4 address or 20 octets if IPv6 address is
   encoded in the Endpoint field.

   Color: unsigned non-zero 32-bit integer value, SR Policy color per
   Section 2.1 of [RFC9256].

   Endpoint: can be either IPv4 (4 octets) or IPv6 address (16 octets).
   This value MAY be different from the one contained in the Destination
   address field in the END-POINTS object, or in the Tunnel Endpoint
   Address field in the LSP-IDENTIFIERS TLV (Section 2.1 of [RFC9256]).







Koldychev, et al.        Expires 6 October 2025                 [Page 8]

Internet-Draft               PCEP SR Policy                   April 2025


   If a PCEP speaker receives an SRPA object whose Association
   Parameters do not follow the above specification, then the PCEP
   speaker MUST send a PCErr message with Error-Type = 26 "Association
   Error", Error-Value = 20 "SR Policy Identifier Mismatch".

   The encoding choice of the Association Parameters in this way is
   meant to guarantee that there is no possibility of a race condition
   when multiple PCEP speakers want to associate the same SR Policy at
   the same time.  By adhering to this format, all PCEP speakers come up
   with the same Association Parameters independently of each other
   based on the SR Policy parameters [RFC9256].

   The last hop of a computed SR Policy Candidate Path MAY differ from
   the Endpoint contained in the <headend, color, endpoint> tuple.  An
   example use case is to terminate the SR Policy before reaching the
   Endpoint and have decapsulated traffic be forwarded the rest of the
   path to the Endpoint node using the native Interior Gateway Protocol
   (IGP) path(s).  In this example, the destination of the SR Policy
   Candidate Paths will be some node before the Endpoint, but the
   Endpoint value is still used at the headend to steer traffic with
   that Endpoint IP address into the SR Policy.  The Destination of the
   SR Policy Candidate Path is signaled using the END-POINTS object and/
   or LSP-IDENTIFIERS TLV, per the usual PCEP procedure.  When neither
   the END-POINTS object nor LSP-IDENTIFIERS TLV is present, the PCEP
   speaker MUST extract the destination from the Endpoint field in the
   SRPA Extended Association ID TLV.

   SR Policy with Color-Only steering is signaled with the Endpoint
   value set to unspecified, i.e., 0.0.0.0 for IPv4 or :: for IPv6, per
   Section 8.8. of [RFC9256].

4.5.  Association Information

   The SRPA object may carry the following TLVs:

   *  SRPOLICY-POL-NAME TLV (Section 4.5.1): (optional) encodes the SR
      Policy Name string.

   *  SRPOLICY-CPATH-ID TLV (Section 4.5.2): (mandatory) encodes the SR
      Policy Candidate Path Identifier.

   *  SRPOLICY-CPATH-NAME TLV (Section 4.5.3): (optional) encodes the SR
      Policy Candidate Path string name.

   *  SRPOLICY-CPATH-PREFERENCE TLV (Section 4.5.4): (optional) encodes
      the SR Policy Candidate Path preference value.





Koldychev, et al.        Expires 6 October 2025                 [Page 9]

Internet-Draft               PCEP SR Policy                   April 2025


   When a mandatory TLV is missing from an SRPA object, the PCEP speaker
   MUST send a PCErr message with Error-Type = 6 "Mandatory Object
   Missing", Error-Value = 21 "Missing SR Policy Mandatory TLV".

   Only one TLV instance of each TLV type can be carried in an SRPA
   object, and only the first occurrence is processed.  Any others MUST
   be silently ignored.

4.5.1.  SR Policy Name TLV

   The SRPOLICY-POL-NAME TLV (Figure 2) is an optional TLV for the SRPA
   object.  It is RECOMMENDED that the size of the name for the SR
   Policy is limited to 255 bytes.  Implementations MAY choose to
   truncate long names to 255 bytes to simplify interoperability with
   other protocols.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ~                       SR Policy Name                          ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 2: SRPOLICY-POL-NAME TLV Format

   Type: 56 for "SRPOLICY-POL-NAME" TLV.

   Length: indicates the length of the value portion of the TLV in
   octets and MUST be greater than 0.  The TLV MUST be zero-padded so
   that the TLV is 4-octet aligned.  Padding is not included in the
   Length field.

   SR Policy Name: SR Policy name, as defined in Section 2.1 of
   [RFC9256].  It MUST be a string of printable ASCII [RFC0020]
   characters, without a NULL terminator.

4.5.2.  SR Policy Candidate Path Identifier TLV

   The SRPOLICY-CPATH-ID TLV (Figure 3) is a mandatory TLV for the SRPA
   object.








Koldychev, et al.        Expires 6 October 2025                [Page 10]

Internet-Draft               PCEP SR Policy                   April 2025


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Proto. Origin |                 Reserved                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Originator ASN                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                       Originator Address                      |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         Discriminator                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 3: SRPOLICY-CPATH-ID TLV Format

   Type: 57 for "SRPOLICY-CPATH-ID" TLV.

   Length: 28.

   Protocol Origin: 8-bit unsigned integer value that encodes the
   protocol origin.  The values of this field are specified in IANA
   registry "SR Policy Protocol Origin" under "Segment Routing" registry
   group, which was introduced in Section 8.4 of
   [I-D.ietf-idr-bgp-ls-sr-policy].  Note that in the PCInitiate message
   [RFC8281], the Protocol Origin is always set to 10 - "PCEP (In PCEP
   or when BGP-LS Producer is PCE)".  The "SR Policy Protocol Origin"
   IANA registry includes a combination of values intended for use in
   PCEP and BGP-LS.  When the registry contains two variants of values
   associated with the mechanism or protocol used for provisioning of
   the Candidate Path, for example 1 - "PCEP" and 10 - "PCEP (In PCEP or
   when BGP-LS Producer is PCE)", the "(In PCEP or when BGP-LS Producer
   is PCE)" variants MUST be used in PCEP.

   Reserved: This field MUST be set to zero on transmission and MUST be
   ignored on receipt.

   Originator Autonomous System Number (ASN): Represented as a 32-bit
   unsigned integer value, part of the originator identifier, as
   specified in Section 2.4 of [RFC9256].  When sending a PCInitiate
   message [RFC8281], the PCE is the originator of the Candidate Path.
   If the PCE is configured with an ASN, then it MUST set it, otherwise
   the ASN is set to 0.





Koldychev, et al.        Expires 6 October 2025                [Page 11]

Internet-Draft               PCEP SR Policy                   April 2025


   Originator Address: Represented as a 128-bit value as specified in
   Section 2.4 of [RFC9256].  When sending a PCInitiate message, the PCE
   is acting as the originator and therefore MAY set this to an address
   that it owns.

   Discriminator: 32-bit unsigned integer value that encodes the
   Discriminator of the Candidate Path, as specified in Section 2.5 of
   [RFC9256].  This is the field that mainly distinguishes different SR
   Policy Candidate Paths, coming from the same originator.  It is
   allowed to be any number in the 32-bit range.

4.5.3.  SR Policy Candidate Path Name TLV

   The SRPOLICY-CPATH-NAME TLV (Figure 4) is an optional TLV for the
   SRPA object.  It is RECOMMENDED that the size of the name for the SR
   Policy is limited to 255 bytes.  Implementations MAY choose to
   truncate long names to 255 bytes to simplify interoperability with
   other protocols.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ~                 SR Policy Candidate Path Name                 ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 4: SRPOLICY-CPATH-NAME TLV Format

   Type: 58 for "SRPOLICY-CPATH-NAME" TLV.

   Length: indicates the length of the value portion of the TLV in
   octets and MUST be greater than 0.  The TLV MUST be zero-padded so
   that the TLV is 4-octet aligned.  Padding is not included in the
   Length field.

   SR Policy Candidate Path Name: SR Policy Candidate Path Name, as
   defined in Section 2.6 of [RFC9256].  It MUST be a string of
   printable ASCII characters, without a NULL terminator.

4.5.4.  SR Policy Candidate Path Preference TLV

   The SRPOLICY-CPATH-PREFERENCE TLV (Figure 5) is an optional TLV for
   the SRPA object.  If the TLV is absent, then default Preference value
   is 100, per Section 2.7 of [RFC9256].




Koldychev, et al.        Expires 6 October 2025                [Page 12]

Internet-Draft               PCEP SR Policy                   April 2025


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Preference                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 5: SRPOLICY-CPATH-PREFERENCE TLV Format

   Type: 59 for "SRPOLICY-CPATH-PREFERENCE" TLV.

   Length: 4.

   Preference: 32-bit unsigned integer value that encodes preference of
   the Candidate Path as defined in Section 2.7 of [RFC9256].

5.  SR Policy Signaling Extensions

   This section introduces mechanisms described for SR Policies in
   [RFC9256] to PCEP.  These extensions do not make use of the SRPA for
   signaling in PCEP therefore cannot rely on the Association capability
   negotiation in ASSOC-Type-List TLV and separate capability
   negotiation is required.

   This document specifies four new TLVs to be carried in the OPEN or
   LSP object.  Only one TLV instance of each type can be carried, and
   only the first occurrence is processed.  Any others MUST be ignored.

5.1.  SR Policy Capability TLV

   The SRPOLICY-CAPABILITY TLV (Figure 6) is a TLV for the OPEN object.
   It is used at session establishment to learn the peer's capabilities
   with respect to SR Policy.  Implementations that support SR Policy
   MUST include SRPOLICY-CAPABILITY TLV in the OPEN object if the
   extension is enabled.  In addition, the ASSOC-Type-List TLV
   containing SRPA Type (6) MUST be present in the OPEN object, as
   specified in Section 4.

   If a PCEP speaker receives SRPA but the SRPOLICY-CAPABILITY TLV is
   not exchanged, then the PCEP speaker MUST send a PCErr message with
   Error- Type = 10 ("Reception of an invalid object") and Error-Value =
   TBD2 ("Missing SRPOLICY-CAPABILITY TLV") and MUST then close the PCEP
   session.







Koldychev, et al.        Expires 6 October 2025                [Page 13]

Internet-Draft               PCEP SR Policy                   April 2025


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             Flags                   |L| |I|E|P|
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 6: SRPOLICY-CAPABILITY TLV Format

   Type: 71 for "SRPOLICY-CAPABILITY" TLV.

   Length: 4.

   Flags (32 bits):

   The following flags are currently defined:

   *  P-flag (Computation Priority): If set to '1' by a PCEP speaker,
      the P flag indicates that the PCEP speaker supports the handling
      of COMPUTATION-PRIORITY TLV for the SR Policy (Section 5.2.1).  If
      this flag is set to 0, then the receiving PCEP speaker MUST NOT
      send the COMPUTATION-PRIORITY TLV and MUST ignore it on receipt.

   *  E-Flag (Explicit NULL Label Policy): If set to '1' by a PCEP
      speaker, the E flag indicates that the PCEP speaker supports the
      handling of Explicit Null Label Policy (ENLP) TLV for the SR
      Policy (Section 5.2.2).  If this flag is set to 0, then the
      receiving PCEP speaker MUST NOT send the ENLP TLV and MUST ignore
      it on receipt.

   *  I-Flag (Invalidation): If set to '1' by a PCEP speaker, the I flag
      indicates that the PCEP speaker supports the handling of
      INVALIDATION TLV for the SR Policy (Section 5.2.3).  If this flag
      is set to 0, then the receiving PCEP speaker MUST NOT send the
      INVALIDATION TLV and MUST ignore it on receipt.

   *  L-Flag (Stateless Operation): If set to '1' by a PCEP speaker, the
      L flag indicates that the PCEP speaker supports the stateless
      (PCReq/PCRep) operations for the SR Policy (Section 5.3).  If the
      PCE set this flag to 0, then the PCC MUST NOT send PCReq messages
      to this PCE for the SR Policy.

   Unassigned bits MUST be set to '0' on transmission and MUST be
   ignored on receipt.  More flags can be assigned in the future per
   (Section 6.7).





Koldychev, et al.        Expires 6 October 2025                [Page 14]

Internet-Draft               PCEP SR Policy                   April 2025


5.2.  LSP Object TLVs

   This section is introducing three new TLVs to be carried in LSP
   object introduced in Section 7.3 of [RFC8231].

5.2.1.  Computation Priority TLV

   The COMPUTATION-PRIORITY TLV (Figure 7) is an optional TLV.  It is
   used to signal the numerical computation priority, as specified in
   Section 2.12 of [RFC9256].  If the TLV is absent from the LSP object
   and the P-flag in the SRPOLICY-CAPABILITY TLV is set to 1, a default
   Priority value of 128 is used.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Priority   |                   Reserved                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 7: COMPUTATION-PRIORITY TLV Format

   Type: 68 for "COMPUTATION-PRIORITY" TLV.

   Length: 4.

   Priority: 8-bit unsigned integer value that encodes numerical
   priority with which this LSP is to be recomputed by the PCE upon
   topology change.  Lowest value is the highest priority.

   Reserved: This field MUST be set to zero on transmission and MUST be
   ignored on receipt.

5.2.2.  Explicit Null Label Policy (ENLP) TLV

   To steer an unlabeled IP packet into an SR policy for the MPLS data
   plane, it is necessary to push a label stack of one or more labels on
   that packet.  The Explicit NULL Label Policy (ENLP) TLV is an
   optional TLV for the LSP object used to indicate whether an Explicit
   NULL Label [RFC3032] must be pushed on an unlabeled IP packet before
   any other labels.  The contents of this TLV are used by the SR Policy
   Manager as described in Section 4.1 of [RFC9256].  If an ENLP TLV is
   not present, the decision of whether to push an Explicit NULL label
   on a given packet is a matter of local configuration.  Note that
   Explicit Null is currently only defined for SR-MPLS and not for SRv6.
   Therefore, the receiving PCEP speaker MUST ignore the presence of
   this TLV for SRv6 Policies.



Koldychev, et al.        Expires 6 October 2025                [Page 15]

Internet-Draft               PCEP SR Policy                   April 2025


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    ENLP       |                   Reserved                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

           Figure 8: Explicit Null Label Policy (ENLP) TLV Format

   Type: 69 for "ENLP" TLV.

   Length: 4.

   ENLP (Explicit NULL Label Policy): 8-bit unsigned integer value that
   indicates whether Explicit NULL labels are to be pushed on unlabeled
   IP packets that are being steered into a given SR policy.  The values
   of this field are specified in IANA registry "SR Policy ENLP Values"
   under "Segment Routing" registry group, which was introduced in
   Section 6.10 of [I-D.ietf-idr-sr-policy-safi].

   Reserved: This field MUST be set to zero on transmission and MUST be
   ignored on receipt.

   The ENLP unassigned values may be used for future extensions and
   implementations MUST ignore the ENLP TLV with unrecognized values.
   The behavior signaled in this TLV MAY be overridden by local
   configuration by the network operator based on their deployment
   requirements.  The Section 4.1 of [RFC9256] describes the behavior on
   the headend for the handling of the explicit null label.

5.2.3.  Invalidation TLV

   The INVALIDATION TLV (Figure 9) is an optional TLV.  This TLV is used
   to control traffic steering into an LSP when the LSP is operationally
   down/invalid.  In the context of SR Policy, this TLV facilitates the
   Drop-upon-invalid behavior, specified in Section 8.2 of [RFC9256].
   Normally, if the LSP is down/invalid then it stops attracting
   traffic; traffic that would have been destined for that LSP is
   redirected somewhere else, such as via IGP or another LSP.  The Drop-
   upon-invalid behavior specifies that the LSP keeps attracting traffic
   and the traffic has to be dropped at the headend.  Such an LSP is
   said to be "in drop state".  While in the drop state, the LSP
   operational state is "UP", as indicated by the O-flag in the LSP
   object.  However, the ERO object MAY be empty, if no valid path has
   been computed.

   The INVALIDATION TLV is used in both directions between PCEP peers:



Koldychev, et al.        Expires 6 October 2025                [Page 16]

Internet-Draft               PCEP SR Policy                   April 2025


   *  PCE -> PCC: PCE specifies to the PCC whether to enable or disable
      Drop-upon-invalid (Config).

   *  PCC -> PCE: PCC reports the current setting of the Drop-upon-
      invalid (Config) and also whether the LSP is currently in the drop
      state (Oper).

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Type              |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   Oper        |   Config      |            Reserved           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 9: INVALIDATION TLV Format

   Type: 70 for "INVALIDATION" TLV.

   Length: 4.

   Oper: An 8-bit flag field that encodes the operational state of the
   LSP.  It MUST be set to 0 by the PCE when sending and MUST be ignored
   by the PCC upon receipt.  See Section 6.5 for IANA information.

                               0 1 2 3 4 5 6 7
                              +-+-+-+-+-+-+-+-+
                              |             |D|
                              +-+-+-+-+-+-+-+-+

             Figure 10: Oper state of Drop-upon-invalid feature

   *  D: dropping - the LSP is actively dropping traffic as a result of
      Drop-upon-invalid behavior being activated.

   *  The unassigned bits in the Flag octet MUST be set to zero upon
      transmission and MUST be ignored upon receipt.

   Config: An 8-bit flag field that encodes the configuration of the
   LSP.  See Section 6.6 for IANA information.

                               0 1 2 3 4 5 6 7
                              +-+-+-+-+-+-+-+-+
                              |             |D|
                              +-+-+-+-+-+-+-+-+

            Figure 11: Config state of Drop-upon-invalid feature




Koldychev, et al.        Expires 6 October 2025                [Page 17]

Internet-Draft               PCEP SR Policy                   April 2025


   *  D: drop enabled - the Candidate Path has Drop-upon-invalid feature
      enabled.

   *  The unassigned bits in the Flag octet MUST be set to zero upon
      transmission and MUST be ignored upon receipt.

   Reserved: This field MUST be set to zero on transmission and MUST be
   ignored on receipt.

5.2.3.1.  Drop-upon-invalid applies to SR Policy

   The Drop-upon-invalid feature is somewhat special among the other SR
   Policy features in the way that it is enabled/disabled.  This feature
   is enabled only on the whole SR Policy, not on a particular Candidate
   Path of that SR Policy, i.e., when any Candidate Path has Drop-upon-
   invalid enabled, it means that the whole SR Policy has the feature
   enabled.  As stated in Section 8.1 of [RFC9256], an SR Policy is
   invalid when all its Candidate Paths are invalid.

   Once all the Candidate Paths of an SR Policy have become invalid,
   then the SR Policy checks whether any of the Candidate Paths have
   Drop-upon-invalid enabled.  If so, the SR Policy enters the drop
   state and "activates" the highest preference Candidate Path which has
   the Drop-upon-invalid enabled.  Note that only one Candidate Path
   needs to be reported to the PCE with the D (dropping) flag set.

5.3.  Update to RFC 8231

   Section 5.8.2 of [RFC8231], allows delegation of an LSP in
   operationally down state, but at the same time mandates the use of
   PCReq before sending PCRpt.  This document updates Section 5.8.2 of
   [RFC8231], by making that section of [RFC8231] not applicable to SR
   Policy LSPs.  Thus, when a PCC wants to delegate an SR Policy LSP, it
   MAY proceed directly to sending PCRpt, without first sending PCReq
   and waiting for PCRep.  This has the advantage of reducing the number
   of PCEP messages and simplifying the implementation.

   Furthermore, a PCEP speaker is not required to support PCReq/PCRep at
   all for SR Policies.  The PCEP speaker can indicate support for
   PCReq/PCRep via the "L-Flag" in the SRPOLICY-CAPABILITY TLV (See
   Section 5.1).  When this flag is cleared, or when the SRPOLICY-
   CAPABILITY TLV is absent, the given peer MUST NOT be sent PCReq/PCRep
   messages for SR Policy LSPs.  Conversely, when this flag is set, the
   peer can receive and process PCReq/PCRep messages for SR Policy LSPs.

   The above applies only to SR Policy LSPs and does not affect other
   LSP types, such as RSVP-TE LSPs.  For other LSP types, Section 5.8.2
   of [RFC8231] continues to apply.



Koldychev, et al.        Expires 6 October 2025                [Page 18]

Internet-Draft               PCEP SR Policy                   April 2025


6.  IANA Considerations

   IANA maintains the "Path Computation Element Protocol (PCEP) Numbers"
   registry at <https://www.iana.org/assignments/pcep>.

6.1.  Association Type

   This document defines a new association type: SR Policy Association.
   IANA is requested to confirm the following allocation in the
   "ASSOCIATION Type Field" registry within the "Path Computation
   Element Protocol (PCEP) Numbers" registry group:

   +-----------+-------------------------------------------+-----------+
   | Type      | Name                                      | Reference |
   +-----------+-------------------------------------------+-----------+
   | 6         | SR Policy Association                     | This.I-D  |
   +-----------+-------------------------------------------+-----------+

6.2.  PCEP TLV Type Indicators

   This document defines eight new TLVs for carrying additional
   information about SR Policy and SR Policy Candidate Paths.  IANA is
   requested to confirm the following allocations in the existing "PCEP
   TLV Type Indicators" registry as follows:

   +-----------+-------------------------------------------+-----------+
   | Value     | Description                               | Reference |
   +-----------+-------------------------------------------+-----------+
   | 56        | SRPOLICY-POL-NAME                         | This.I-D  |
   +-----------+-------------------------------------------+-----------+
   | 57        | SRPOLICY-CPATH-ID                         | This.I-D  |
   +-----------+-------------------------------------------+-----------+
   | 58        | SRPOLICY-CPATH-NAME                       | This.I-D  |
   +-----------+-------------------------------------------+-----------+
   | 59        | SRPOLICY-CPATH-PREFERENCE                 | This.I-D  |
   +-----------+-------------------------------------------+-----------+
   | 68        | COMPUTATION-PRIORITY                      | This.I-D  |
   +-----------+-------------------------------------------+-----------+
   | 69        | EXPLICIT-NULL-LABEL-POLICY                | This.I-D  |
   +-----------+-------------------------------------------+-----------+
   | 70        | INVALIDATION                              | This.I-D  |
   +-----------+-------------------------------------------+-----------+
   | 71        | SRPOLICY-CAPABILITY                       | This.I-D  |
   +-----------+-------------------------------------------+-----------+







Koldychev, et al.        Expires 6 October 2025                [Page 19]

Internet-Draft               PCEP SR Policy                   April 2025


6.3.  PCEP Errors

   This document defines one new Error-Value within the "Mandatory
   Object Missing" Error-Type, two new Error-Values within the
   "Association Error" Error-Type and one new Error-Value within the
   "Reception of an invalid object".

   IANA is requested to confirm the following allocations within the
   "PCEP-ERROR Object Error Types and Values" registry of the "Path
   Computation Element Protocol (PCEP) Numbers" registry group.

   +------------+------------------+-----------------------+-----------+
   | Error-Type | Meaning          | Error-value           | Reference |
   +------------+------------------+-----------------------+-----------+
   | 6          | Mandatory Object |                       | [RFC5440] |
   |            | Missing          |                       |           |
   +------------+------------------+-----------------------+-----------+
   |            |                  | 21: Missing SR        | This.I-D  |
   |            |                  | Policy Mandatory TLV  |           |
   +------------+------------------+-----------------------+-----------+
   | 26         | Association      |                       | [RFC8697] |
   |            | Error            |                       |           |
   +------------+------------------+-----------------------+-----------+
   |            |                  | 20: SR Policy         | This.I-D  |
   |            |                  | Identifers Mismatch   |           |
   +------------+------------------+-----------------------+-----------+
   |            |                  | 21: SR Policy         | This.I-D  |
   |            |                  | Candidate Path        |           |
   |            |                  | Identifier Mismatch   |           |
   +------------+------------------+-----------------------+-----------+

   IANA is requested to make new allocations within the "PCEP-ERROR
   Object Error Types and Values" registry of the "Path Computation
   Element Protocol (PCEP) Numbers" registry group.

















Koldychev, et al.        Expires 6 October 2025                [Page 20]

Internet-Draft               PCEP SR Policy                   April 2025


   +------------+------------------+-----------------------+-----------+
   | Error-Type | Meaning          | Error-value           | Reference |
   +------------+------------------+-----------------------+-----------+
   | 6          | Mandatory Object |                       | [RFC5440] |
   |            | Missing          |                       |           |
   +------------+------------------+-----------------------+-----------+
   |            |                  | TBD1: Missing SR      | This.I-D  |
   |            |                  | Policy Association    |           |
   +------------+------------------+-----------------------+-----------+
   | 10         | Reception of an  |                       | [RFC5440] |
   |            | invalid object   |                       |           |
   +------------+------------------+-----------------------+-----------+
   |            |                  | TBD2: Missing         | This.I-D  |
   |            |                  | SRPOLICY-CAPABILITY   |           |
   |            |                  | TLV                   |           |
   +------------+------------------+-----------------------+-----------+

6.4.  TE-PATH-BINDING TLV Flag field

   An earlier version of this document added new bit within the "TE-
   PATH-BINDING TLV Flag field" registry of the "Path Computation
   Element Protocol (PCEP) Numbers" registry group, which was also early
   allocated by the IANA.

   IANA is requested to mark the bit position as deprecated.

   +------------+------------------------------------------+-----------+
   | Bit position | Description                            | Reference |
   +--------------+----------------------------------------+-----------+
   | 1            | Deprecated (Specified-BSID-only)       | This.I-D  |
   +--------------+----------------------------------------+-----------+

6.5.  SR Policy Invalidation Operational State

   This document requests IANA to maintain a new registry under "Path
   Computation Element Protocol (PCEP) Numbers" registry group.  The new
   registry is called "SR Policy Invalidation Operational Flags".  New
   values are to be assigned by "IETF review" [RFC8126].  Each bit
   should be tracked with the following qualities:

   *  Bit (counting from bit 0 as the most significant bit).

   *  Description.

   *  Reference.






Koldychev, et al.        Expires 6 October 2025                [Page 21]

Internet-Draft               PCEP SR Policy                   April 2025


   +-------+-----------------------------------------------+-----------+
   | Bit   | Description                                   | Reference |
   +-------+-----------------------------------------------+-----------+
   | 0 - 6 | Unassigned                                    | This.I-D  |
   +-------+-----------------------------------------------+-----------+
   | 7     | D: dropping - the LSP is currently attracting | This.I-D  |
   |       | traffic and actively dropping it.             |           |
   +-------+-----------------------------------------------+-----------+

6.6.  SR Policy Invalidation Configuration State

   This document requests IANA to maintain a new registry under "Path
   Computation Element Protocol (PCEP) Numbers" registry group.  The new
   registry is called "SR Policy Invalidation Configuration Flags".  New
   values are to be assigned by "IETF review" [RFC8126].  Each bit
   should be tracked with the following qualities:

   *  Bit (counting from bit 0 as the most significant bit).

   *  Description.

   *  Reference.

   +-------+-----------------------------------------------+-----------+
   | Bit   | Description                                   | Reference |
   +-------+-----------------------------------------------+-----------+
   | 0 - 6 | Unassigned.                                   | This.I-D  |
   +-------+-----------------------------------------------+-----------+
   | 7     | D: drop enabled - the Drop-upon-invalid is    | This.I-D  |
   |       | enabled on the LSP.                           |           |
   +-------+-----------------------------------------------+-----------+

6.7.  SR Policy Capability TLV Flag field

   This document requests IANA to maintain a new registry under "Path
   Computation Element Protocol (PCEP) Numbers" registry group.  The new
   registry is called "SR Policy Capability TLV Flag Field".  New values
   are to be assigned by "IETF review" [RFC8126].  Each bit should be
   tracked with the following qualities:

   *  Bit (counting from bit 0 as the most significant bit).

   *  Description.

   *  Reference.






Koldychev, et al.        Expires 6 October 2025                [Page 22]

Internet-Draft               PCEP SR Policy                   April 2025


  +--------+-----------------------------------------------+-----------+
  | Bit    | Description                                   | Reference |
  +--------+-----------------------------------------------+-----------+
  | 0 - 26 | Unassigned                                    | This.I-D  |
  +--------+-----------------------------------------------+-----------+
  | 27     | Stateless Operation (L-Flag)                  | This.I-D  |
  +--------+-----------------------------------------------+-----------+
  | 28     | Unassigned                                    | This.I-D  |
  +--------+-----------------------------------------------+-----------+
  | 29     | Invalidation (I-Flag)                         | This.I-D  |
  +--------+-----------------------------------------------+-----------+
  | 30     | Explicit NULL Label Policy (E-Flag)           | This.I-D  |
  +--------+-----------------------------------------------+-----------+
  | 31     | Computation Priority (P-flag)                 | This.I-D  |
  +--------+-----------------------------------------------+-----------+

7.  Implementation Status

   [Note to the RFC Editor - remove this section before publication, as
   well as remove the reference to RFC 7942.]

   This section records the status of known implementations of the
   protocol defined by this specification at the time of posting of this
   Internet-Draft, and is based on a proposal described in [RFC7942].
   The description of implementations in this section is intended to
   assist the IETF in its decision processes in progressing drafts to
   RFCs.  Please note that the listing of any individual implementation
   here does not imply endorsement by the IETF.  Furthermore, no effort
   has been spent to verify the information presented here that was
   supplied by IETF contributors.  This is not intended as, and must not
   be construed to be, a catalog of available implementations or their
   features.  Readers are advised to note that other implementations may
   exist.

   According to [RFC7942], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".

7.1.  Cisco

   *  Organization: Cisco Systems

   *  Implementation: IOS-XR PCC and PCE.





Koldychev, et al.        Expires 6 October 2025                [Page 23]

Internet-Draft               PCEP SR Policy                   April 2025


   *  Description: All features supported except Computation Priority,
      Explicit NULL and Invalidation Drop.

   *  Maturity Level: Production.

   *  Coverage: Full.

   *  Contact: ssidor@cisco.com

7.2.  Juniper

   *  Organization: Juniper Networks

   *  Implementation: PCC and PCE.

   *  Description: Everything in -05 except SR Policy Name TLV and SR
      Policy Candidate Path Name TLV.

   *  Maturity Level: Production.

   *  Coverage: Partial.

   *  Contact: cbarth@juniper.net

8.  Security Considerations

   The information carried in the newly defined SRPA object and TLVs
   could provide an eavesdropper with additional information about the
   SR Policy.

   The security considerations described in [RFC5440], [RFC8231],
   [RFC8281], [RFC8664], [RFC8697], [RFC9256] and [RFC9603] are
   applicable to this specification.

   As per [RFC8231], it is RECOMMENDED that these PCEP extensions can
   only be activated on authenticated and encrypted sessions across PCEs
   and PCCs belonging to the same administrative authority, using
   Transport Layer Security (TLS) [RFC8253] as per the recommendations
   and best current practices in [RFC9325].

9.  Manageability Considerations

   All manageability requirements and considerations listed in
   [RFC5440], [RFC8231], [RFC8664], [RFC9256], and [RFC9603] apply to
   PCEP protocol extensions defined in this document.  In addition,
   requirements and considerations listed in this section apply.





Koldychev, et al.        Expires 6 October 2025                [Page 24]

Internet-Draft               PCEP SR Policy                   April 2025


9.1.  Control of Function and Policy

   A PCE or PCC implementation MAY allow the capabilities specified in
   Section 5.1 and the capability for support of SRPA advertised in
   ASSOC-Type-List TLV to be enabled and disabled.

9.2.  Information and Data Models

   [I-D.ietf-pce-pcep-srv6-yang] defines YANG module with common
   building blocks for PCEP Extensions described in Section 4.

9.3.  Liveness Detection and Monitoring

   Mechanisms defined in this document do not imply any new liveness
   detection and monitoring requirements in addition to those already
   listed in [RFC5440], [RFC8664], and [RFC9256].

9.4.  Verify Correct Operations

   Operation verification requirements already listed in [RFC5440],
   [RFC8231], [RFC8664], [RFC9256], and [RFC9603] are applicable to
   mechanisms defined in this document.

   An implementation MUST allow the operator to view SR Policy
   Identifier and SR Policy Candidate Path Identifier advertised in SRPA
   object.

   An implementation SHOULD allow the operator to view the capabilities
   defined in this document advertised by each PCEP peer.

   An implementation SHOULD allow the operator to view LSPs associated
   with specific SR Policy Identifier.

9.5.  Requirements On Other Protocols

   The PCEP extensions defined in this document do not imply any new
   requirements on other protocols.

9.6.  Impact On Network Operations

   The mechanisms defined in [RFC5440], [RFC8231], [RFC9256] and
   [RFC9603] also apply to the PCEP extensions defined in this document.









Koldychev, et al.        Expires 6 October 2025                [Page 25]

Internet-Draft               PCEP SR Policy                   April 2025


10.  Acknowledgement

   We would like to thank Abdul Rehman, Andrew Stone, Boris Khasanov,
   Cheng Li, Dhruv Dhody, Gorry Fairhurst, Gyan Mishra, Huaimo Chen,
   Ines Robles, Joseph Salowey, Ketan Talaulikar, Marina Fizgeer, Mike
   Bishopm, Praveen Kumar, Robert Sparks, Roman Danyliw, Stephane
   Litkowski, Tom Petch, Zoey Rose, Xiao Min, Xiong Quan for review and
   suggestions.

11.  References

11.1.  Normative References

   [RFC0020]  Cerf, V., "ASCII format for network interchange", STD 80,
              RFC 20, DOI 10.17487/RFC0020, October 1969,
              <https://www.rfc-editor.org/info/rfc20>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC3032]  Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
              Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack
              Encoding", RFC 3032, DOI 10.17487/RFC3032, January 2001,
              <https://www.rfc-editor.org/info/rfc3032>.

   [RFC5440]  Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation
              Element (PCE) Communication Protocol (PCEP)", RFC 5440,
              DOI 10.17487/RFC5440, March 2009,
              <https://www.rfc-editor.org/info/rfc5440>.

   [RFC7942]  Sheffer, Y. and A. Farrel, "Improving Awareness of Running
              Code: The Implementation Status Section", BCP 205,
              RFC 7942, DOI 10.17487/RFC7942, July 2016,
              <https://www.rfc-editor.org/info/rfc7942>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.






Koldychev, et al.        Expires 6 October 2025                [Page 26]

Internet-Draft               PCEP SR Policy                   April 2025


   [RFC8231]  Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path
              Computation Element Communication Protocol (PCEP)
              Extensions for Stateful PCE", RFC 8231,
              DOI 10.17487/RFC8231, September 2017,
              <https://www.rfc-editor.org/info/rfc8231>.

   [RFC8253]  Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody,
              "PCEPS: Usage of TLS to Provide a Secure Transport for the
              Path Computation Element Communication Protocol (PCEP)",
              RFC 8253, DOI 10.17487/RFC8253, October 2017,
              <https://www.rfc-editor.org/info/rfc8253>.

   [RFC8281]  Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path
              Computation Element Communication Protocol (PCEP)
              Extensions for PCE-Initiated LSP Setup in a Stateful PCE
              Model", RFC 8281, DOI 10.17487/RFC8281, December 2017,
              <https://www.rfc-editor.org/info/rfc8281>.

   [RFC8402]  Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
              Decraene, B., Litkowski, S., and R. Shakir, "Segment
              Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
              July 2018, <https://www.rfc-editor.org/info/rfc8402>.

   [RFC8408]  Sivabalan, S., Tantsura, J., Minei, I., Varga, R., and J.
              Hardwick, "Conveying Path Setup Type in PCE Communication
              Protocol (PCEP) Messages", RFC 8408, DOI 10.17487/RFC8408,
              July 2018, <https://www.rfc-editor.org/info/rfc8408>.

   [RFC8664]  Sivabalan, S., Filsfils, C., Tantsura, J., Henderickx, W.,
              and J. Hardwick, "Path Computation Element Communication
              Protocol (PCEP) Extensions for Segment Routing", RFC 8664,
              DOI 10.17487/RFC8664, December 2019,
              <https://www.rfc-editor.org/info/rfc8664>.

   [RFC8697]  Minei, I., Crabbe, E., Sivabalan, S., Ananthakrishnan, H.,
              Dhody, D., and Y. Tanaka, "Path Computation Element
              Communication Protocol (PCEP) Extensions for Establishing
              Relationships between Sets of Label Switched Paths
              (LSPs)", RFC 8697, DOI 10.17487/RFC8697, January 2020,
              <https://www.rfc-editor.org/info/rfc8697>.

   [RFC9256]  Filsfils, C., Talaulikar, K., Ed., Voyer, D., Bogdanov,
              A., and P. Mattes, "Segment Routing Policy Architecture",
              RFC 9256, DOI 10.17487/RFC9256, July 2022,
              <https://www.rfc-editor.org/info/rfc9256>.






Koldychev, et al.        Expires 6 October 2025                [Page 27]

Internet-Draft               PCEP SR Policy                   April 2025


   [RFC9325]  Sheffer, Y., Saint-Andre, P., and T. Fossati,
              "Recommendations for Secure Use of Transport Layer
              Security (TLS) and Datagram Transport Layer Security
              (DTLS)", BCP 195, RFC 9325, DOI 10.17487/RFC9325, November
              2022, <https://www.rfc-editor.org/info/rfc9325>.

   [RFC9603]  Li, C., Ed., Kaladharan, P., Sivabalan, S., Koldychev, M.,
              and Y. Zhu, "Path Computation Element Communication
              Protocol (PCEP) Extensions for IPv6 Segment Routing",
              RFC 9603, DOI 10.17487/RFC9603, July 2024,
              <https://www.rfc-editor.org/info/rfc9603>.

11.2.  Informative References

   [I-D.ietf-idr-sr-policy-safi]
              Previdi, S., Filsfils, C., Talaulikar, K., Mattes, P., and
              D. Jain, "Advertising Segment Routing Policies in BGP",
              Work in Progress, Internet-Draft, draft-ietf-idr-sr-
              policy-safi-13, 6 February 2025,
              <https://datatracker.ietf.org/doc/html/draft-ietf-idr-sr-
              policy-safi-13>.

   [I-D.ietf-idr-bgp-ls-sr-policy]
              Previdi, S., Talaulikar, K., Dong, J., Gredler, H., and J.
              Tantsura, "Advertisement of Segment Routing Policies using
              BGP Link-State", Work in Progress, Internet-Draft, draft-
              ietf-idr-bgp-ls-sr-policy-17, 6 March 2025,
              <https://datatracker.ietf.org/doc/html/draft-ietf-idr-bgp-
              ls-sr-policy-17>.

   [I-D.ietf-pce-multipath]
              Koldychev, M., Sivabalan, S., Saad, T., Beeram, V. P.,
              Bidgoli, H., Yadav, B., Peng, S., and G. S. Mishra, "PCEP
              Extensions for Signaling Multipath Information", Work in
              Progress, Internet-Draft, draft-ietf-pce-multipath-12, 8
              October 2024, <https://datatracker.ietf.org/doc/html/
              draft-ietf-pce-multipath-12>.

   [I-D.ietf-pce-pcep-srv6-yang]
              Li, C., Sivabalan, S., Peng, S., Koldychev, M., and L.
              Ndifor, "A YANG Data Model for Segment Routing (SR) Policy
              and SR in IPv6 (SRv6) support in Path Computation Element
              Communications Protocol (PCEP)", Work in Progress,
              Internet-Draft, draft-ietf-pce-pcep-srv6-yang-06, 19
              October 2024, <https://datatracker.ietf.org/doc/html/
              draft-ietf-pce-pcep-srv6-yang-06>.





Koldychev, et al.        Expires 6 October 2025                [Page 28]

Internet-Draft               PCEP SR Policy                   April 2025


   [RFC3031]  Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol
              Label Switching Architecture", RFC 3031,
              DOI 10.17487/RFC3031, January 2001,
              <https://www.rfc-editor.org/info/rfc3031>.

   [RFC4655]  Farrel, A., Vasseur, J.-P., and J. Ash, "A Path
              Computation Element (PCE)-Based Architecture", RFC 4655,
              DOI 10.17487/RFC4655, August 2006,
              <https://www.rfc-editor.org/info/rfc4655>.

   [RFC9552]  Talaulikar, K., Ed., "Distribution of Link-State and
              Traffic Engineering Information Using BGP", RFC 9552,
              DOI 10.17487/RFC9552, December 2023,
              <https://www.rfc-editor.org/info/rfc9552>.

   [RFC9604]  Sivabalan, S., Filsfils, C., Tantsura, J., Previdi, S.,
              and C. Li, Ed., "Carrying Binding Label/SID in PCE-Based
              Networks", RFC 9604, DOI 10.17487/RFC9604, August 2024,
              <https://www.rfc-editor.org/info/rfc9604>.

Appendix A.  Contributors

   Dhruv Dhody
   Huawei
   India

   Email: dhruv.ietf@gmail.com

   Cheng Li
   Huawei Technologies
   Huawei Campus, No. 156 Beiqing Rd.
   Beijing, 10095
   China

   Email: chengli13@huawei.com

   Zafar Ali
   Cisco Systems, Inc.

   Email: zali@cisco.com

   Rajesh Melarcode
   Cisco Systems, Inc.
   2000 Innovation Dr.
   Kanata, Ontario
   Canada

   Email: rmelarco@cisco.com



Koldychev, et al.        Expires 6 October 2025                [Page 29]

Internet-Draft               PCEP SR Policy                   April 2025


Authors' Addresses

   Mike Koldychev
   Ciena Corporation
   385 Terry Fox Dr.
   Kanata Ontario K2K 0L1
   Canada
   Email: mkoldych@proton.me


   Siva Sivabalan
   Ciena Corporation
   385 Terry Fox Dr.
   Kanata Ontario K2K 0L1
   Canada
   Email: ssivabal@ciena.com


   Samuel Sidor
   Cisco Systems, Inc.
   Eurovea Central 3.
   811 09 Bratislava
   Slovakia
   Email: ssidor@cisco.com


   Colby Barth
   Juniper Networks, Inc.
   Email: cbarth@juniper.net


   Shuping Peng
   Huawei Technologies
   Huawei Campus, No. 156 Beiqing Rd.
   Beijing
   100095
   China
   Email: pengshuping@huawei.com


   Hooman Bidgoli
   Nokia
   Email: hooman.bidgoli@nokia.com








Koldychev, et al.        Expires 6 October 2025                [Page 30]