TOC |
|
This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.
This Internet-Draft will expire on September 9, 2009.
Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
The General Internet Signaling Transport (GIST) protocol currently uses TCP or TLS over TCP for connection mode operation. This document describes the usage of GIST over the Stream Control Transmission Protocol (SCTP) and Datagram Transport Layer Security (DTLS). The use of SCTP can take advantage of features provided by SCTP, namely streaming-based transport, support of multiple streams to avoid head of line blocking, the support of multi-homing to provide network level fault tolerance, as well as partial reliability extension for partially reliable data transmission. This document also specifies how to establish GIST security over datagram transport protocols using an extension to DTLS.
1.
Introduction
2.
Terminology and Abbreviations
3.
GIST Over SCTP
3.1.
Message Association Setup
3.1.1.
Overview
3.1.2.
Protocol-Definition: Forwards-SCTP
3.2.
Effect on GIST State Maintenance
3.3.
PR-SCTP Support
3.4.
API between GIST and NSLP
4.
Bit-Level Formats
4.1.
MA-Protocol-Options
5.
Application of GIST over SCTP
5.1.
Multi-homing support of SCTP
5.2.
Streaming support in SCTP
6.
Use of DTLS with GIST
7.
Security Considerations
8.
IANA Considerations
9.
Acknowledgments
10.
References
10.1.
Normative References
10.2.
Informative References
§
Authors' Addresses
TOC |
This document describes the usage of the General Internet Signaling Transport (GIST) protocol [1] (Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” June 2009.) over the Stream Control Transmission Protocol (SCTP) [2] (Stewart, R., “Stream Control Transmission Protocol,” September 2007.).
GIST, in its initial specification for connection mode operation, runs on top of a byte-stream oriented transport protocol providing a reliable, in-sequence delivery, i.e., using the Transmission Control Protocol (TCP) [7] (Postel, J., “Transmission Control Protocol,” September 1981.) for signaling message transport. However, some NSLP context information has a definite lifetime, therefore, the GIST transport protocol could benefit from flexible retransmission, so stale NSLP messages that are held up by congestion can be dropped. Together with the head-of-line blocking issue and other issues with TCP, these considerations argue that implementations of GIST should support the Stream Control Transport Protocol (SCTP)[2] (Stewart, R., “Stream Control Transmission Protocol,” September 2007.) as an optional transport protocol for GIST, especially if deployment over the public Internet is contemplated. Like TCP, SCTP supports reliability, congestion control and fragmentation. Unlike TCP, SCTP provides a number of functions that are desirable for signaling transport, such as multiple streams and multiple IP addresses for path failure recovery. In addition, its Partial Reliability extension (PR-SCTP) [3] (Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P. Conrad, “Stream Control Transmission Protocol (SCTP) Partial Reliability Extension,” May 2004.) supports partial retransmission based on a programmable retransmission timer. Furthermore, Datagram Transport Layer Security (DTLS) [4] (Rescorla, E. and N. Modadugu, “Datagram Transport Layer Security,” April 2006.) provides a viable solution for securing datagram transport protocols, e.g., by using DTLS over SCTP [5] (Tuexen, M., Seggelmann, R., and E. Rescorla, “Datagram Transport Layer Security (DTLS) for Stream Control Transmission Protocol (SCTP),” March 2010.).
This document defines the use of SCTP as a transport protocol and the use of DTLS as a security mechanism for GIST Messaging Associations and discusses the implications on GIST State Maintenance and API between GIST and NSLPs. Furthermore, this document shows how GIST SHOULD be used to provide the additional features offered by SCTP to deliver the GIST C-mode messages (which can in turn carry NSIS Signaling Layer Protocol (NSLP) [8] (Hancock, R., Karagiannis, G., Loughney, J., and S. Van den Bosch, “Next Steps in Signaling (NSIS): Framework,” June 2005.) messages as payload). More specifically:
The method described in this document does not require any changes of GIST or SCTP. However, SCTP implementations MUST support the optional feature of fragmentation of SCTP user messages.
TOC |
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [6] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.). Other terminologies and abbreviations used in this document are taken from related specifications (e.g., [1] (Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” June 2009.) and [2] (Stewart, R., “Stream Control Transmission Protocol,” September 2007.)) as follows:
TOC |
TOC |
TOC |
The basic GIST protocol specification defines two possible protocols to be used in Messaging Associations, namely Forwards-TCP and TLS. This document adds Forwards-SCTP as another possible protocol. In Forwards-SCTP, analog to Forwards-TCP, connections between peers are opened in the forwards direction, from the querying node, towards the responder.
A new MA-Protocol-ID type, "Forwards-SCTP", is defined in this document for using SCTP as GIST transport protocol. A formal definition of Forwards-SCTP is given in the following section.
TOC |
This MA-Protocol-ID denotes a basic use of SCTP between peers. Support for this protocol is OPTIONAL. If this protocol is offered, MA-protocol-options data MUST also be carried in the SCD object. The MA-protocol-options field formats are:
The connection is opened in the forwards direction, from the querying node towards the responder. The querying node MAY use any source address and source port. The destination information MUST be derived from information in the Response: the address from the interface- address from the Network-Layer-Information object and the port from the SCD object as described above.
Associations using Forwards-SCTP can carry messages with the transfer attribute Reliable=True. If an error occurs on the SCTP connection such as a reset, as can be detected for example by a socket exception condition, GIST MUST report this to NSLPs as discussed in Section 4.1.2 of [1] (Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” June 2009.).
TOC |
This document defines the use of SCTP as a transport protocol for GIST Messaging Associations. As SCTP provides additional functionality over TCP, this section dicusses the implications of using GIST over SCTP on GIST State Maintenance.
While SCTP defines uni-directional streams, for the purpose of this document, the concept of a bi-direction stream is used. Implementations MUST establish downstream and upstream (uni-directional) SCTP streams always together and use the same stream identifier in both directions. Thus, the two uni-directional streams (in opposite directions) form a bi-directional stream.
Due to the multi-streaming support of SCTP, it is possible to use different SCTP streams for different resources (e.g., different NSLP sessions), rather than maintaining all messages along the same transport connection/association in a correlated fashion as TCP (which imposes strict (re)ordering and reliability per transport level). However, there are limitations to the use of multi-streaming. All GIST messages for a particular session MUST be sent over the same SCTP stream to assure the NSLP assumption of in-order delivery. Multiple sessions MAY share the same SCTP stream based on local policy.
The GIST concept of Messaging Association re-use is not affected by this document or the use of SCTP. All rules defined in the GIST specification remain valid in the context of GIST over SCTP.
TOC |
A variant of SCTP, PR-SCTP [3] (Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P. Conrad, “Stream Control Transmission Protocol (SCTP) Partial Reliability Extension,” May 2004.) provides a "timed reliability" service. It allows the user to specify, on a per message basis, the rules governing how persistent the transport service should be in attempting to send the message to the receiver. Because of the chunk bundling function of SCTP, reliable and partial reliable messages can be multiplexed over a single PR-SCTP association. Therefore, a GIST over SCTP implementation SHOULD attempt to establish a PR-SCTP association instead of a standard SCTP association, if available, to support more flexible transport features for potential needs of different NSLPs.
TOC |
GIST specification defines an abstract API between GIST and NSLPs. While this document does not change the API itself, the semantics of some parameters have slightly different interpretation in the context of SCTP. This section only lists those primitives and parameters, that need special consideration when used in the context of SCTP. The relevant primitives from [1] (Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” June 2009.) are as follows:
TOC |
TOC |
This section provides the bit-level format for the MA-protocol-options field that is used for SCTP protocol in the Stack-Configuration-Data object of GIST.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ : SCTP port number | Reserved : +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ SCTP port number = Port number at which the responder will accept SCTP connections
The SCTP port number is only supplied if sent by the responder.
TOC |
TOC |
In general, the multi-homing support of SCTP can be used to improve fault-tolerance in case of a path- or link-failure. Thus, GIST over SCTP would be able to deliver NSLP messages between peers even if the primary path is not working anymore. However, for the Message Routing Methods (MRMs) defined in the basic GIST specification such a feature is only of limited use. The default MRM is path-coupled, which means, that if the primary path is failing for the SCTP association, it most likely is also for the IP traffic that is signaled for. Thus, GIST would need to perform a refresh anyway to cope with the route change. Nevertheless, the use of the multi-homing support of SCTP provides GIST and the NSLP with another source to detect route changes. Furthermore, for the time between detection of the route change and recovering from it, the alternative path offered by SCTP can be used by the NSLP to make the transition more smoothly. Finally, future MRMs might have different properties and therefore benefit from multi-homing more broadly.
TOC |
Streaming support in SCTP is advantageous for GIST. It allows better parallel processing, in particular by avoiding head of line blocking issue in TCP. Since a same GIST MA may be reused by multiple sessions, using TCP as transport GIST signaling messages belonging to different sessions may be blocked if another message is dropped. In the case of SCTP, this can be avoided as different sessions having different requirements can belong to different streams, thus a message loss or reordering in a stream will only affect the delivery of messages within that particular stream, and not any other streams.
TOC |
The MA-Protocol-ID for DTLS denotes a basic use of datagram transport layer channel security, initially in conjunction with SCTP. It provides authentication, integrity and optionally replay protection for control packets. The use of DTLS for securing GIST over SCTP allows GIST to take the advantage of features provided by SCTP and its extensions. Note replay protection is not available for DTLS over SCTP [5] (Tuexen, M., Seggelmann, R., and E. Rescorla, “Datagram Transport Layer Security (DTLS) for Stream Control Transmission Protocol (SCTP),” March 2010.). The usage of DTLS for GIST over SCTP is similar to TLS for GIST as specified in [1] (Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” June 2009.), where a stack-proposal containing both MA-Protocol-IDs for SCTP and DTLS during the GIST handshake phase.
GIST message associations using DTLS may carry messages with transfer attributes requesting confidentiality or integrity protection. The specific DTLS version will be negotiated within the DTLS layer itself, but implementations MUST NOT negotiate to protocol versions prior to DTLS v1.0 and MUST use the highest protocol version supported by both peers. GIST nodes supporting DTLS MUST be able to negotiate the DTLS NULL and block cipher ciphers and SHOULD be able to negotiate the new cipher suites. They MAY negotiate any mutually acceptable ciphersuite that provides authentication, integrity, and confidentiality. The same rules for negotiating TLS cipher suites as specified in Section 5.7.3 of [1] (Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” June 2009.) apply.
No MA-protocol-options field is required for DTLS. The configuration information for the transport protocol over which DTLS is running (e.g. SCTP port number) is provided by the MA-protocol-options for that protocol.
TOC |
The security considerations of [1] (Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” June 2009.), [2] (Stewart, R., “Stream Control Transmission Protocol,” September 2007.) and [4] (Rescorla, E. and N. Modadugu, “Datagram Transport Layer Security,” April 2006.) apply. Following [5] (Tuexen, M., Seggelmann, R., and E. Rescorla, “Datagram Transport Layer Security (DTLS) for Stream Control Transmission Protocol (SCTP),” March 2010.), replay detection of DTLS over SCTP is not supported.
The usage of DTLS [4] (Rescorla, E. and N. Modadugu, “Datagram Transport Layer Security,” April 2006.) for securing GIST over datagram transport protocols MUST be implemented and SHOULD be used. An implementation of GIST over SCTP with no PR-SCTP support MAY use TLS for its channel security, when DTLS is not available between two GIST peers.
TOC |
This specification extends [1] (Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” June 2009.) by introducing two additional MA-Protocol-IDs:
+---------------------+------------------------------------------+ | MA-Protocol-ID | Protocol | +---------------------+------------------------------------------+ | 3 | SCTP opened in the forwards direction | | | | | 4 | DTLS initiated in the forwards direction | +---------------------+------------------------------------------+
TOC |
The authors would like to thank John Loughney, Robert Hancock, Andrew McDonald, Martin Stiemerling, Fang-Chun Kuo, Jan Demter, Lauri Liuhto, and Michael Tuexen for their helpful suggestions.
TOC |
TOC |
[1] | Schulzrinne, H. and M. Stiemerling, “GIST: General Internet Signalling Transport,” draft-ietf-nsis-ntlp-20 (work in progress), June 2009 (TXT). |
[2] | Stewart, R., “Stream Control Transmission Protocol,” RFC 4960, September 2007 (TXT). |
[3] | Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P. Conrad, “Stream Control Transmission Protocol (SCTP) Partial Reliability Extension,” RFC 3758, May 2004 (TXT). |
[4] | Rescorla, E. and N. Modadugu, “Datagram Transport Layer Security,” RFC 4347, April 2006 (TXT). |
[5] | Tuexen, M., Seggelmann, R., and E. Rescorla, “Datagram Transport Layer Security (DTLS) for Stream Control Transmission Protocol (SCTP),” draft-ietf-tsvwg-dtls-for-sctp-05 (work in progress), March 2010 (TXT). |
[6] | Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML). |
TOC |
[7] | Postel, J., “Transmission Control Protocol,” STD 7, RFC 793, September 1981 (TXT). |
[8] | Hancock, R., Karagiannis, G., Loughney, J., and S. Van den Bosch, “Next Steps in Signaling (NSIS): Framework,” RFC 4080, June 2005 (TXT). |
TOC |
Xiaoming Fu | |
University of Goettingen | |
Institute of Computer Science | |
Goldschmidtstr. 7 | |
Goettingen 37077 | |
Germany | |
Email: | fu@cs.uni-goettingen.de |
Christian Dickmann | |
University of Goettingen | |
Institute of Computer Science | |
Goldschmidtstr. 7 | |
Goettingen 37077 | |
Germany | |
Email: | mail@christian-dickmann.de |
Jon Crowcroft | |
University of Cambridge | |
Computer Laboratory | |
William Gates Building | |
15 JJ Thomson Avenue | |
Cambridge CB3 0FD | |
UK | |
Email: | jon.crowcroft@cl.cam.ac.uk |