Internet-Draft | YANG Data Types and Groupings for Crypto | December 2023 |
Watsen | Expires 30 June 2024 | [Page] |
This document presents a YANG 1.1 (RFC 7950) module defining identities, typedefs, and groupings useful to cryptographic applications.¶
This draft contains placeholder values that need to be replaced with finalized values at the time of publication. This note summarizes all of the substitutions that are needed. No other RFC Editor instructions are specified elsewhere in this document.¶
Artwork in this document contains shorthand references to drafts in progress. Please apply the following replacements:¶
AAAA
--> the assigned RFC value for this draft¶
Artwork in this document contains placeholder values for the date of publication of this draft. Please apply the following replacement:¶
2023-12-28
--> the publication date of this draft¶
The "Relation to other RFCs" section Section 1.1 contains the text "one or more YANG modules" and, later, "modules". This text is sourced from a file in a context where it is unknown how many modules a draft defines. The text is not wrong as is, but it may be improved by stating more directly how many modules are defined.¶
The "Relation to other RFCs" section Section 1.1 contains a self-reference to this draft, along with a corresponding reference in the Appendix. Please replace the self-reference in this section with "This RFC" (or similar) and remove the self-reference in the "Normative/Informative References" section, whichever it is in.¶
Tree-diagrams in this draft may use the '/' line-folding mode defined in RFC 8792. However, nicer-to-the-eye is when the '//' line-folding mode is used. The AD suggested suggested putting a request here for the RFC Editor to help convert "ugly" '/' folded examples to use the '//' folding mode. "Help convert" may be interpreted as, identify what looks ugly and ask the authors to make the adjustment.¶
The following Appendix section is to be removed prior to publication:¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 30 June 2024.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
This document presents a YANG 1.1 [RFC7950] module defining identities, typedefs, and groupings useful to cryptographic applications.¶
This document presents one or more YANG modules [RFC7950] that are part of a collection of RFCs that work together to, ultimately, enable the configuration of both the clients and servers of both the NETCONF [RFC6241] and RESTCONF [RFC8040] protocols.¶
The dependency relationship between the primary YANG groupings defined in the various RFCs is presented in the below diagram. In some cases, a draft may define secondary groupings that introduce dependencies not illustrated in the diagram. The labels in the diagram are a shorthand name for the defining RFC. The citation reference for shorthand name is provided below the diagram.¶
crypto-types ^ ^ / \ / \ truststore keystore ^ ^ ^ ^ | +---------+ | | | | | | | +------------+ | tcp-client-server | / | | ^ ^ ssh-client-server | | | | ^ tls-client-server | | | ^ ^ http-client-server | | | | | ^ | | | +-----+ +---------+ | | | | | | | | +-----------|--------|--------------+ | | | | | | | | +-----------+ | | | | | | | | | | | | | | | | | netconf-client-server restconf-client-server¶
Label in Diagram | Originating RFC |
---|---|
crypto-types | [I-D.ietf-netconf-crypto-types] |
truststore | [I-D.ietf-netconf-trust-anchors] |
keystore | [I-D.ietf-netconf-keystore] |
tcp-client-server | [I-D.ietf-netconf-tcp-client-server] |
ssh-client-server | [I-D.ietf-netconf-ssh-client-server] |
tls-client-server | [I-D.ietf-netconf-tls-client-server] |
http-client-server | [I-D.ietf-netconf-http-client-server] |
netconf-client-server | [I-D.ietf-netconf-netconf-client-server] |
restconf-client-server | [I-D.ietf-netconf-restconf-client-server] |
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
This document is compliant with the Network Management Datastore Architecture (NMDA) [RFC8342]. It does not define any protocol accessible nodes that are "config false".¶
Various examples used in this document use a placeholder value for binary data that has been base64 encoded (e.g., "BASE64VALUE="). This placeholder value is used as real base64 encoded structures are often many lines long and hence distracting to the example being presented.¶
This section defines a YANG 1.1 [RFC7950] module called "ietf-crypto-types". A high-level overview of the module is provided in Section 2.1. Examples illustrating the module's use are provided in Examples (Section 2.2). The YANG module itself is defined in Section 2.3.¶
This section provides an overview of the "ietf-crypto-types" module in terms of its features, identities, typedefs, and groupings.¶
The following diagram lists all the "feature" statements defined in the "ietf-crypto-types" module:¶
Features: +-- one-symmetric-key-format +-- one-asymmetric-key-format +-- symmetrically-encrypted-value-format +-- asymmetrically-encrypted-value-format +-- cms-enveloped-data-format +-- cms-encrypted-data-format +-- p10-csr-format +-- csr-generation +-- certificate-expiration-notification +-- cleartext-passwords +-- encrypted-passwords +-- cleartext-symmetric-keys +-- hidden-symmetric-keys +-- encrypted-symmetric-keys +-- cleartext-private-keys +-- hidden-private-keys +-- encrypted-private-keys¶
The diagram above uses syntax that is similar to but not the same as that in [RFC8340].¶
The following diagram illustrates the hierarchal relationship amongst the "identity" statements defined in the "ietf-crypto-types" module:¶
Identities: +-- public-key-format | +-- subject-public-key-info-format | +-- ssh-public-key-format +-- private-key-format | +-- rsa-private-key-format | +-- ec-private-key-format | +-- one-asymmetric-key-format | {one-asymmetric-key-format}? +-- symmetric-key-format | +-- octet-string-key-format | +-- one-symmetric-key-format | {one-symmetric-key-format}? +-- encrypted-value-format | +-- symmetrically-encrypted-value-format | | | {symmetrically-encrypted-value-format}? | | +-- cms-encrypted-data-format | | {cms-encrypted-data-format}? | +-- asymmetrically-encrypted-value-format | | {asymmetrically-encrypted-value-format}? | +-- cms-enveloped-data-format | {cms-enveloped-data-format}? +-- csr-format +-- p10-csr-format {p10-csr-format?}¶
The diagram above uses syntax that is similar to but not the same as that in [RFC8340].¶
Comments:¶
The following diagram illustrates the relationship amongst the "typedef" statements defined in the "ietf-crypto-types" module:¶
Typedefs: binary +-- csr-info +-- csr +-- x509 | +-- trust-anchor-cert-x509 | +-- end-entity-cert-x509 +-- crl +-- ocsp-request +-- ocsp-response +-- cms +-- data-content-cms +-- signed-data-cms | +-- trust-anchor-cert-cms | +-- end-entity-cert-cms +-- enveloped-data-cms +-- digested-data-cms +-- encrypted-data-cms +-- authenticated-data-cms¶
The diagram above uses syntax that is similar to but not the same as that in [RFC8340].¶
Comments:¶
The "ietf-crypto-types" module defines the following "grouping" statements:¶
Each of these groupings are presented in the following subsections.¶
The following tree diagram [RFC8340] illustrates the "encrypted-value-grouping" grouping:¶
grouping encrypted-value-grouping: +-- encrypted-by +-- encrypted-value-format identityref +-- encrypted-value binary¶
Comments:¶
The "encrypted-value" node is the value, encrypted by the key referenced by the "encrypted-by" node, and encoded in the format appropriate for the kind of key it was encrypted by.¶
See Section 2.1.2 for information about the "format" identities.¶
This section presents a tree diagram [RFC8340] illustrating the "password-grouping" grouping. This tree diagram does not expand the internally used grouping statement(s):¶
grouping password-grouping: +-- (password-type) +--:(cleartext-password) {cleartext-passwords}? | +-- cleartext-password? string +--:(encrypted-password) {encrypted-passwords}? +-- encrypted-password +---u encrypted-value-grouping¶
Comments:¶
For the referenced grouping statement(s):¶
The "choice" statement enables the password data to be cleartext or encrypted, as follows:¶
This section presents a tree diagram [RFC8340] illustrating the "symmetric-key-grouping" grouping. This tree diagram does not expand the internally used grouping statement(s):¶
grouping symmetric-key-grouping: +-- key-format? identityref +-- (key-type) +--:(cleartext-key) | +-- cleartext-key? binary {cleartext-symmetric-keys}? +--:(hidden-key) {hidden-symmetric-keys}? | +-- hidden-key? empty +--:(encrypted-key) {encrypted-symmetric-keys}? +-- encrypted-key +---u encrypted-value-grouping¶
Comments:¶
For the referenced grouping statement(s):¶
The "choice" statement enables the private key data to be cleartext, encrypted, or hidden, as follows:¶
This section presents a tree diagram [RFC8340] illustrating the "public-key-grouping" grouping. This tree diagram does not expand any internally used grouping statement(s):¶
grouping public-key-grouping: +-- public-key-format identityref +-- public-key binary¶
Comments:¶
This section presents a tree diagram [RFC8340] illustrating the "private-key-grouping" grouping. This tree diagram does not expand the internally used grouping statement(s):¶
grouping private-key-grouping: +-- private-key-format? identityref +-- (private-key-type) +--:(cleartext-private-key) {cleartext-private-keys}? | +-- cleartext-private-key? binary +--:(hidden-private-key) {hidden-private-keys}? | +-- hidden-private-key? empty +--:(encrypted-private-key) {encrypted-private-keys}? +-- encrypted-private-key +---u encrypted-value-grouping¶
Comments:¶
For the referenced grouping statement(s):¶
The "choice" statement enables the private key data to be cleartext, encrypted, or hidden, as follows:¶
This section presents a tree diagram [RFC8340] illustrating the "asymmetric-key-pair-grouping" grouping. This tree diagram does not expand the internally used grouping statement(s):¶
grouping asymmetric-key-pair-grouping: +---u public-key-grouping +---u private-key-grouping¶
Comments:¶
For the referenced grouping statement(s):¶
The following tree diagram [RFC8340] illustrates the "certificate-expiration-grouping" grouping:¶
grouping certificate-expiration-grouping: +---n certificate-expiration {certificate-expiration-notification}? +-- expiration-date yang:date-and-time¶
Comments:¶
This section presents a tree diagram [RFC8340] illustrating the "trust-anchor-cert-grouping" grouping. This tree diagram does not expand the internally used grouping statement(s):¶
grouping trust-anchor-cert-grouping: +-- cert-data? trust-anchor-cert-cms +---u certificate-expiration-grouping¶
Comments:¶
For the referenced grouping statement(s):¶
This section presents a tree diagram [RFC8340] illustrating the "end-entity-cert-grouping" grouping. This tree diagram does not expand the internally used grouping statement(s):¶
grouping end-entity-cert-grouping: +-- cert-data? end-entity-cert-cms +---u certificate-expiration-grouping¶
Comments:¶
For the referenced grouping statement(s):¶
The following tree diagram [RFC8340] illustrates the "generate-csr-grouping" grouping:¶
grouping generate-csr-grouping: +---x generate-csr {csr-generation}? +---w input | +---w csr-format identityref | +---w csr-info csr-info +--ro output +--ro (csr-type) +--:(p10-csr) +--ro p10-csr? p10-csr¶
Comments:¶
This section presents a tree diagram [RFC8340] illustrating the "asymmetric-key-pair-with-cert-grouping" grouping. This tree diagram does not expand the internally used grouping statement(s):¶
grouping asymmetric-key-pair-with-cert-grouping: +---u asymmetric-key-pair-grouping +---u end-entity-cert-grouping +---u generate-csr-grouping¶
Comments:¶
For the referenced grouping statement(s):¶
This section presents a tree diagram [RFC8340] illustrating the "asymmetric-key-pair-with-certs-grouping" grouping. This tree diagram does not expand the internally used grouping statement(s):¶
grouping asymmetric-key-pair-with-certs-grouping: +---u asymmetric-key-pair-grouping +-- certificates | +-- certificate* [name] | +-- name? string | +---u end-entity-cert-grouping +---u generate-csr-grouping¶
Comments:¶
For the referenced grouping statement(s):¶
The "ietf-crypto-types" module does not contain any protocol-accessible nodes, but the module needs to be "implemented", as described in Section 5.6.5 of [RFC7950], in order for the identities in Section 2.1.2 to be defined.¶
The following non-normative module is constructed in order to illustrate the use of the "symmetric-key-grouping" (Section 2.1.4.3), the "asymmetric-key-pair-with-certs-grouping" (Section 2.1.4.12), and the "password-grouping" (Section 2.1.4.2) grouping statements.¶
Notably, this example module and associated configuration data illustrates that a hidden asymmetric key (ex-hidden-asymmetric-key) has been used to encrypt a symmetric key (ex-encrypted-one-symmetric-based-symmetric-key) that has been used to encrypt another asymmetric key (ex-encrypted-rsa-based-asymmetric-key). Additionally, the symmetric key is also used to encrypt a password (ex-encrypted-password).¶
module ex-crypto-types-usage { yang-version 1.1; namespace "http://example.com/ns/example-crypto-types-usage"; prefix ectu; import ietf-crypto-types { prefix ct; reference "RFC AAAA: YANG Data Types and Groupings for Cryptography"; } organization "Example Corporation"; contact "YANG Designer <mailto:yang.designer@example.com>"; description "This example module illustrates the 'symmetric-key-grouping' and 'asymmetric-key-grouping' groupings defined in the 'ietf-crypto-types' module defined in RFC AAAA."; revision 2023-12-28 { description "Initial version"; reference "RFC AAAA: Common YANG Data Types for Cryptography"; } container symmetric-keys { description "A container of symmetric keys."; list symmetric-key { key "name"; description "A symmetric key"; leaf name { type string; description "An arbitrary name for this key."; } uses ct:symmetric-key-grouping { augment "key-type/encrypted-key/encrypted-key/" + "encrypted-by" { description "Augments in a choice statement enabling the encrypting key to be any other symmetric or asymmetric key."; uses encrypted-by-grouping; } } } } container asymmetric-keys { description "A container of asymmetric keys."; list asymmetric-key { key "name"; leaf name { type string; description "An arbitrary name for this key."; } uses ct:asymmetric-key-pair-with-certs-grouping { augment "private-key-type/encrypted-private-key/" + "encrypted-private-key/encrypted-by" { description "Augments in a choice statement enabling the encrypting key to be any other symmetric or asymmetric key."; uses encrypted-by-grouping; } } description "An asymmetric key pair with associated certificates."; } } container passwords { description "A container of passwords."; list password { key "name"; leaf name { type string; description "An arbitrary name for this password."; } uses ct:password-grouping { augment "password-type/encrypted-password/" + "encrypted-password/encrypted-by" { description "Augments in a choice statement enabling the encrypting key to be any symmetric or asymmetric key."; uses encrypted-by-grouping; } } description "A password."; } } grouping encrypted-by-grouping { description "A grouping that defines a choice enabling references to other keys."; choice encrypted-by { mandatory true; description "A choice amongst other symmetric or asymmetric keys."; case symmetric-key-ref { leaf symmetric-key-ref { type leafref { path "/ectu:symmetric-keys/ectu:symmetric-key/" + "ectu:name"; } description "Identifies the symmetric key that encrypts this key."; } } case asymmetric-key-ref { leaf asymmetric-key-ref { type leafref { path "/ectu:asymmetric-keys/ectu:asymmetric-key/" + "ectu:name"; } description "Identifies the asymmetric key that encrypts this key."; } } } } }¶
The tree diagram [RFC8340] for this example module follows:¶
module: ex-crypto-types-usage +--rw symmetric-keys | +--rw symmetric-key* [name] | +--rw name string | +--rw key-format? identityref | +--rw (key-type) | +--:(cleartext-key) | | +--rw cleartext-key? binary | | {cleartext-symmetric-keys}? | +--:(hidden-key) {hidden-symmetric-keys}? | | +--rw hidden-key? empty | +--:(encrypted-key) {encrypted-symmetric-keys}? | +--rw encrypted-key | +--rw encrypted-by | | +--rw (encrypted-by) | | +--:(symmetric-key-ref) | | | +--rw symmetric-key-ref? leafref | | +--:(asymmetric-key-ref) | | +--rw asymmetric-key-ref? leafref | +--rw encrypted-value-format identityref | +--rw encrypted-value binary +--rw asymmetric-keys | +--rw asymmetric-key* [name] | +--rw name string | +--rw public-key-format? identityref | +--rw public-key? binary | +--rw private-key-format? identityref | +--rw (private-key-type) | | +--:(cleartext-private-key) {cleartext-private-keys}? | | | +--rw cleartext-private-key? binary | | +--:(hidden-private-key) {hidden-private-keys}? | | | +--rw hidden-private-key? empty | | +--:(encrypted-private-key) {encrypted-private-keys}? | | +--rw encrypted-private-key | | +--rw encrypted-by | | | +--rw (encrypted-by) | | | +--:(symmetric-key-ref) | | | | +--rw symmetric-key-ref? leafref | | | +--:(asymmetric-key-ref) | | | +--rw asymmetric-key-ref? leafref | | +--rw encrypted-value-format identityref | | +--rw encrypted-value binary | +--rw certificates | | +--rw certificate* [name] | | +--rw name string | | +--rw cert-data end-entity-cert-cms | | +---n certificate-expiration | | {certificate-expiration-notification}? | | +-- expiration-date yang:date-and-time | +---x generate-csr {csr-generation}? | +---w input | | +---w csr-format identityref | | +---w csr-info csr-info | +--ro output | +--ro (csr-type) | +--:(p10-csr) | +--ro p10-csr? p10-csr +--rw passwords +--rw password* [name] +--rw name string +--rw (password-type) +--:(cleartext-password) {cleartext-passwords}? | +--rw cleartext-password? string +--:(encrypted-password) {encrypted-passwords}? +--rw encrypted-password +--rw encrypted-by | +--rw (encrypted-by) | +--:(symmetric-key-ref) | | +--rw symmetric-key-ref? leafref | +--:(asymmetric-key-ref) | +--rw asymmetric-key-ref? leafref +--rw encrypted-value-format identityref +--rw encrypted-value binary¶
Finally, the following example illustrates various symmetric and asymmetric keys as they might appear in configuration:¶
=============== NOTE: '\' line wrapping per RFC 8792 ================ <symmetric-keys xmlns="http://example.com/ns/example-crypto-types-usage" xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"> <symmetric-key> <name>ex-hidden-symmetric-key</name> <hidden-key/> </symmetric-key> <symmetric-key> <name>ex-octet-string-based-symmetric-key</name> <key-format>ct:octet-string-key-format</key-format> <cleartext-key>BASE64VALUE=</cleartext-key> </symmetric-key> <symmetric-key> <name>ex-one-symmetric-based-symmetric-key</name> <key-format>ct:one-symmetric-key-format</key-format> <cleartext-key>BASE64VALUE=</cleartext-key> </symmetric-key> <symmetric-key> <name>ex-encrypted-one-symmetric-based-symmetric-key</name> <key-format>ct:one-symmetric-key-format</key-format> <encrypted-key> <encrypted-by> <asymmetric-key-ref>ex-hidden-asymmetric-key</asymmetric-key\ -ref> </encrypted-by> <encrypted-value-format>ct:cms-enveloped-data-format</encrypte\ d-value-format> <encrypted-value>BASE64VALUE=</encrypted-value> </encrypted-key> </symmetric-key> </symmetric-keys> <asymmetric-keys xmlns="http://example.com/ns/example-crypto-types-usage" xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"> <asymmetric-key> <name>ex-hidden-asymmetric-key</name> <public-key-format>ct:subject-public-key-info-format</public-key\ -format> <public-key>BASE64VALUE=</public-key> <hidden-private-key/> <certificates> <certificate> <name>ex-hidden-asymmetric-key-cert</name> <cert-data>BASE64VALUE=</cert-data> </certificate> </certificates> </asymmetric-key> <asymmetric-key> <name>ex-rsa-based-asymmetric-key</name> <public-key-format>ct:subject-public-key-info-format</public-key\ -format> <public-key>BASE64VALUE=</public-key> <private-key-format>ct:rsa-private-key-format</private-key-forma\ t> <cleartext-private-key>BASE64VALUE=</cleartext-private-key> <certificates> <certificate> <name>ex-cert</name> <cert-data>BASE64VALUE=</cert-data> </certificate> </certificates> </asymmetric-key> <asymmetric-key> <name>ex-one-asymmetric-based-asymmetric-key</name> <public-key-format>ct:subject-public-key-info-format</public-key\ -format> <public-key>BASE64VALUE=</public-key> <private-key-format>ct:one-asymmetric-key-format</private-key-fo\ rmat> <cleartext-private-key>BASE64VALUE=</cleartext-private-key> </asymmetric-key> <asymmetric-key> <name>ex-encrypted-rsa-based-asymmetric-key</name> <public-key-format>ct:subject-public-key-info-format</public-key\ -format> <public-key>BASE64VALUE=</public-key> <private-key-format>ct:rsa-private-key-format</private-key-forma\ t> <encrypted-private-key> <encrypted-by> <symmetric-key-ref>ex-encrypted-one-symmetric-based-symmetri\ c-key</symmetric-key-ref> </encrypted-by> <encrypted-value-format>ct:cms-encrypted-data-format</encrypte\ d-value-format> <encrypted-value>BASE64VALUE=</encrypted-value> </encrypted-private-key> </asymmetric-key> </asymmetric-keys> <passwords xmlns="http://example.com/ns/example-crypto-types-usage" xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"> <password> <name>ex-cleartext-password</name> <cleartext-password>super-secret</cleartext-password> </password> <password> <name>ex-encrypted-password</name> <encrypted-password> <encrypted-by> <symmetric-key-ref>ex-encrypted-one-symmetric-based-symmetri\ c-key</symmetric-key-ref> </encrypted-by> <encrypted-value-format>ct:cms-encrypted-data-format</encrypte\ d-value-format> <encrypted-value>BASE64VALUE=</encrypted-value> </encrypted-password> </password> </passwords>¶
The following example illustrates the "generate-certificate-signing-request" action, discussed in Section 2.1.4.10, with the NETCONF protocol.¶
REQUEST¶
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"> <action xmlns="urn:ietf:params:xml:ns:yang:1"> <asymmetric-keys xmlns="http://example.com/ns/example-crypto-types-usage"> <asymmetric-key> <name>ex-hidden-asymmetric-key</name> <generate-csr> <csr-format>ct:p10-csr-format</csr-format> <csr-info>BASE64VALUE=</csr-info> </generate-csr> </asymmetric-key> </asymmetric-keys> </action> </rpc>¶
RESPONSE¶
=============== NOTE: '\' line wrapping per RFC 8792 ================ <rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <p10-csr xmlns="http://example.com/ns/example-crypto-types-usage">\ BASE64VALUE=</p10-csr> </rpc-reply>¶
The following example illustrates the "certificate-expiration" notification, discussed in Section 2.1.4.7, with the NETCONF protocol.¶
=============== NOTE: '\' line wrapping per RFC 8792 ================ <notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"> <eventTime>2018-05-25T00:01:00Z</eventTime> <asymmetric-keys xmlns="http://example.com/ns/example-crypto-types\ -usage"> <asymmetric-key> <name>ex-hidden-asymmetric-key</name> <certificates> <certificate> <name>ex-hidden-asymmetric-key-cert</name> <certificate-expiration> <expiration-date>2018-08-05T14:18:53-05:00</expiration-d\ ate> </certificate-expiration> </certificate> </certificates> </asymmetric-key> </asymmetric-keys> </notification>¶
This module has normative references to [RFC2119], [RFC2986], [RFC3447], [RFC4253], [RFC5280], [RFC5652], [RFC5915], [RFC5958], [RFC6031], [RFC6125], [RFC6960], [RFC6991], [RFC7093], [RFC8174], [RFC8341], and [ITU.X690.2021].¶
<CODE BEGINS> file "ietf-crypto-types@2023-12-28.yang"¶
module ietf-crypto-types { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-crypto-types"; prefix ct; import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } import ietf-netconf-acm { prefix nacm; reference "RFC 8341: Network Configuration Access Control Model"; } organization "IETF NETCONF (Network Configuration) Working Group"; contact "WG Web: https://datatracker.ietf.org/wg/netconf WG List: NETCONF WG list <mailto:netconf@ietf.org> Author: Kent Watsen <mailto:kent+ietf@watsen.net>"; description "This module defines common YANG types for cryptographic applications. Copyright (c) 2023 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC AAAA (https://www.rfc-editor.org/info/rfcAAAA); see the RFC itself for full legal notices. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here."; revision 2023-12-28 { description "Initial version"; reference "RFC AAAA: YANG Data Types and Groupings for Cryptography"; } /****************/ /* Features */ /****************/ feature one-symmetric-key-format { description "Indicates that the server supports the 'one-symmetric-key-format' identity."; } feature one-asymmetric-key-format { description "Indicates that the server supports the 'one-asymmetric-key-format' identity."; } feature symmetrically-encrypted-value-format { description "Indicates that the server supports the 'symmetrically-encrypted-value-format' identity."; } feature asymmetrically-encrypted-value-format { description "Indicates that the server supports the 'asymmetrically-encrypted-value-format' identity."; } feature cms-enveloped-data-format { description "Indicates that the server supports the 'cms-enveloped-data-format' identity."; } feature cms-encrypted-data-format { description "Indicates that the server supports the 'cms-encrypted-data-format' identity."; } feature p10-csr-format { description "Indicates that the server implements support for generating P10-based CSRs, as defined in RFC 2986."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7"; } feature csr-generation { description "Indicates that the server implements the 'generate-csr' action."; } feature certificate-expiration-notification { description "Indicates that the server implements the 'certificate-expiration' notification."; } feature cleartext-passwords { description "Indicates that the server supports cleartext passwords."; } feature encrypted-passwords { description "Indicates that the server supports password encryption."; } feature cleartext-symmetric-keys { description "Indicates that the server supports cleartext symmetric keys."; } feature hidden-symmetric-keys { description "Indicates that the server supports hidden keys."; } feature encrypted-symmetric-keys { description "Indicates that the server supports encryption of symmetric keys."; } feature cleartext-private-keys { description "Indicates that the server supports cleartext private keys."; } feature hidden-private-keys { description "Indicates that the server supports hidden keys."; } feature encrypted-private-keys { description "Indicates that the server supports encryption of private keys."; } /*************************************************/ /* Base Identities for Key Format Structures */ /*************************************************/ identity symmetric-key-format { description "Base key-format identity for symmetric keys."; } identity public-key-format { description "Base key-format identity for public keys."; } identity private-key-format { description "Base key-format identity for private keys."; } /****************************************************/ /* Identities for Private Key Format Structures */ /****************************************************/ identity rsa-private-key-format { base private-key-format; description "Indicates that the private key value is encoded as an RSAPrivateKey (from RFC 3447), encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 3447: PKCS #1: RSA Cryptography Specifications Version 2.2 ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } identity ec-private-key-format { base private-key-format; description "Indicates that the private key value is encoded as an ECPrivateKey (from RFC 5915), encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5915: Elliptic Curve Private Key Structure ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } identity one-asymmetric-key-format { if-feature "one-asymmetric-key-format"; base private-key-format; description "Indicates that the private key value is a CMS OneAsymmetricKey structure, as defined in RFC 5958, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5958: Asymmetric Key Packages ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /***************************************************/ /* Identities for Public Key Format Structures */ /***************************************************/ identity ssh-public-key-format { base public-key-format; description "Indicates that the public key value is an SSH public key, as specified by RFC 4253, Section 6.6, i.e.: string certificate or public key format identifier byte[n] key/certificate data."; reference "RFC 4253: The Secure Shell (SSH) Transport Layer Protocol"; } identity subject-public-key-info-format { base public-key-format; description "Indicates that the public key value is a SubjectPublicKeyInfo structure, as described in RFC 5280 encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /******************************************************/ /* Identities for Symmetric Key Format Structures */ /******************************************************/ identity octet-string-key-format { base symmetric-key-format; description "Indicates that the key is encoded as a raw octet string. The length of the octet string MUST be appropriate for the associated algorithm's block size. The identity of the associated algorithm is outside the scope of this specification. This is also true when the octet string has been encrypted."; } identity one-symmetric-key-format { if-feature "one-symmetric-key-format"; base symmetric-key-format; description "Indicates that the private key value is a CMS OneSymmetricKey structure, as defined in RFC 6031, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 6031: Cryptographic Message Syntax (CMS) Symmetric Key Package Content Type ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /*************************************************/ /* Identities for Encrypted Value Structures */ /*************************************************/ identity encrypted-value-format { description "Base format identity for encrypted values."; } identity symmetrically-encrypted-value-format { if-feature "symmetrically-encrypted-value-format"; base encrypted-value-format; description "Base format identity for symmetrically encrypted values."; } identity asymmetrically-encrypted-value-format { if-feature "asymmetrically-encrypted-value-format"; base encrypted-value-format; description "Base format identity for asymmetrically encrypted values."; } identity cms-encrypted-data-format { if-feature "cms-encrypted-data-format"; base symmetrically-encrypted-value-format; description "Indicates that the encrypted value conforms to the 'encrypted-data-cms' type with the constraint that the 'unprotectedAttrs' value is not set."; reference "RFC 5652: Cryptographic Message Syntax (CMS) ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } identity cms-enveloped-data-format { if-feature "cms-enveloped-data-format"; base asymmetrically-encrypted-value-format; description "Indicates that the encrypted value conforms to the 'enveloped-data-cms' type with the following constraints: The EnvelopedData structure MUST have exactly one 'RecipientInfo'. If the asymmetric key supports public key cryptography (e.g., RSA), then the 'RecipientInfo' must be a 'KeyTransRecipientInfo' with the 'RecipientIdentifier' using a 'subjectKeyIdentifier' with the value set using 'method 1' in RFC 7093 over the recipient's public key. Otherwise, if the asymmetric key supports key agreement (e.g., ECC), then the 'RecipientInfo' must be a 'KeyAgreeRecipientInfo'. The 'OriginatorIdentifierOrKey' value must use the 'OriginatorPublicKey' alternative. The 'UserKeyingMaterial' value must not be present. There must be exactly one 'RecipientEncryptedKeys' value having the 'KeyAgreeRecipientIdentifier' set to 'rKeyId' with the value set using 'method 1' in RFC 7093 over the recipient's public key."; reference "RFC 5652: Cryptographic Message Syntax (CMS) RFC 7093: Additional Methods for Generating Key Identifiers Values ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /*********************************************************/ /* Identities for Certificate Signing Request Formats */ /*********************************************************/ identity csr-format { description "A base identity for the certificate signing request formats. Additional derived identities MAY be defined by future efforts."; } identity p10-csr-format { if-feature "p10-csr-format"; base csr-format; description "Indicates the 'CertificationRequest' structure defined in RFC 2986."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7"; } /***************************************************/ /* Typedefs for ASN.1 structures from RFC 2986 */ /***************************************************/ typedef csr-info { type binary; description "A CertificationRequestInfo structure, as defined in RFC 2986, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7 ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } typedef p10-csr { type binary; description "A CertificationRequest structure, as specified in RFC 2986, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification Version 1.7 ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /***************************************************/ /* Typedefs for ASN.1 structures from RFC 5280 */ /***************************************************/ typedef x509 { type binary; description "A Certificate structure, as specified in RFC 5280, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } typedef crl { type binary; description "A CertificateList structure, as specified in RFC 5280, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /***************************************************/ /* Typedefs for ASN.1 structures from RFC 6960 */ /***************************************************/ typedef oscp-request { type binary; description "A OCSPRequest structure, as specified in RFC 6960, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 6960: X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } typedef oscp-response { type binary; description "A OCSPResponse structure, as specified in RFC 6960, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 6960: X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } /***********************************************/ /* Typedefs for ASN.1 structures from 5652 */ /***********************************************/ typedef cms { type binary; description "A ContentInfo structure, as specified in RFC 5652, encoded using ASN.1 distinguished encoding rules (DER), as specified in ITU-T X.690."; reference "RFC 5652: Cryptographic Message Syntax (CMS) ITU-T X.690: Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER) 02/2021."; } typedef data-content-cms { type cms; description "A CMS structure whose top-most content type MUST be the data content type, as described by Section 4 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef signed-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the signed-data content type, as described by Section 5 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef enveloped-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the enveloped-data content type, as described by Section 6 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef digested-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the digested-data content type, as described by Section 7 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef encrypted-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the encrypted-data content type, as described by Section 8 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef authenticated-data-cms { type cms; description "A CMS structure whose top-most content type MUST be the authenticated-data content type, as described by Section 9 in RFC 5652."; reference "RFC 5652: Cryptographic Message Syntax (CMS)"; } /*********************************************************/ /* Typedefs for ASN.1 structures related to RFC 5280 */ /*********************************************************/ typedef trust-anchor-cert-x509 { type x509; description "A Certificate structure that MUST encode a self-signed root certificate."; } typedef end-entity-cert-x509 { type x509; description "A Certificate structure that MUST encode a certificate that is neither self-signed nor having Basic constraint CA true."; } /*********************************************************/ /* Typedefs for ASN.1 structures related to RFC 5652 */ /*********************************************************/ typedef trust-anchor-cert-cms { type signed-data-cms; description "A CMS SignedData structure that MUST contain the chain of X.509 certificates needed to authenticate the certificate presented by a client or end-entity. The CMS MUST contain only a single chain of certificates. The client or end-entity certificate MUST only authenticate to the last intermediate CA certificate listed in the chain. In all cases, the chain MUST include a self-signed root certificate. In the case where the root certificate is itself the issuer of the client or end-entity certificate, only one certificate is present. This CMS structure MAY (as applicable where this type is used) also contain suitably fresh (as defined by local policy) revocation objects with which the device can verify the revocation status of the certificates. This CMS encodes the degenerate form of the SignedData structure (RFC 5652, Section 5.2) that is commonly used to disseminate X.509 certificates and revocation objects (RFC 5280)."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5652: Cryptographic Message Syntax (CMS)"; } typedef end-entity-cert-cms { type signed-data-cms; description "A CMS SignedData structure that MUST contain the end entity certificate itself, and MAY contain any number of intermediate certificates leading up to a trust anchor certificate. The trust anchor certificate MAY be included as well. The CMS MUST contain a single end entity certificate. The CMS MUST NOT contain any spurious certificates. This CMS structure MAY (as applicable where this type is used) also contain suitably fresh (as defined by local policy) revocation objects with which the device can verify the revocation status of the certificates. This CMS encodes the degenerate form of the SignedData structure (RFC 5652, Section 5.2) that is commonly used to disseminate X.509 certificates and revocation objects (RFC 5280)."; reference "RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile. RFC 5652: Cryptographic Message Syntax (CMS)"; } /*****************/ /* Groupings */ /*****************/ grouping encrypted-value-grouping { description "A reusable grouping for a value that has been encrypted by a referenced symmetric or asymmetric key."; container encrypted-by { nacm:default-deny-write; description "An empty container enabling a reference to the key that encrypted the value to be augmented in. The referenced key MUST be a symmetric key or an asymmetric key. A symmetric key MUST be referenced via a leaf node called 'symmetric-key-ref'. An asymmetric key MUST be referenced via a leaf node called 'asymmetric-key-ref'. The leaf nodes MUST be direct descendants in the data tree, and MAY be direct descendants in the schema tree (e.g., choice/case statements are allowed, but not a container)."; } leaf encrypted-value-format { type identityref { base encrypted-value-format; } mandatory true; description "Identifies the format of the 'encrypted-value' leaf. If 'encrypted-by' points to a symmetric key, then a 'symmetrically-encrypted-value-format' based identity MUST by set (e.g., cms-encrypted-data-format). If 'encrypted-by' points to an asymmetric key, then an 'asymmetrically-encrypted-value-format' based identity MUST by set (e.g., cms-enveloped-data-format)."; } leaf encrypted-value { nacm:default-deny-write; type binary; must '../encrypted-by'; mandatory true; description "The value, encrypted using the referenced symmetric or asymmetric key. The value MUST be encoded using the format associated with the 'encrypted-value-format' leaf."; } } grouping password-grouping { description "A password that may be encrypted."; choice password-type { nacm:default-deny-write; mandatory true; description "Choice between password types."; case cleartext-password { if-feature "cleartext-passwords"; leaf cleartext-password { nacm:default-deny-all; type string; description "The cleartext value of the password."; } } case encrypted-password { if-feature "encrypted-passwords"; container encrypted-password { description "A container for the encrypted password value."; uses encrypted-value-grouping; } } } } grouping symmetric-key-grouping { description "A symmetric key."; leaf key-format { nacm:default-deny-write; type identityref { base symmetric-key-format; } description "Identifies the symmetric key's format. Implementations SHOULD ensure that the incoming symmetric key value is encoded in the specified format. For encrypted keys, the value is the decrypted key's format (i.e., the 'encrypted-value-format' conveys the encrypted key's format."; } choice key-type { nacm:default-deny-write; mandatory true; description "Choice between key types."; case cleartext-key { leaf cleartext-key { if-feature "cleartext-symmetric-keys"; nacm:default-deny-all; type binary; must '../key-format'; description "The binary value of the key. The interpretation of the value is defined by the 'key-format' field."; } } case hidden-key { if-feature "hidden-symmetric-keys"; leaf hidden-key { type empty; must 'not(../key-format)'; description "A hidden key. How such keys are created is outside the scope of this module."; } } case encrypted-key { if-feature "encrypted-symmetric-keys"; container encrypted-key { must '../key-format'; description "A container for the encrypted symmetric key value. The interpretation of the 'encrypted-value' node is via the 'key-format' node"; uses encrypted-value-grouping; } } } } grouping public-key-grouping { description "A public key."; leaf public-key-format { nacm:default-deny-write; type identityref { base public-key-format; } mandatory true; description "Identifies the public key's format. Implementations SHOULD ensure that the incoming public key value is encoded in the specified format."; } leaf public-key { nacm:default-deny-write; type binary; mandatory true; description "The binary value of the public key. The interpretation of the value is defined by 'public-key-format' field."; } } grouping private-key-grouping { description "A private key."; leaf private-key-format { nacm:default-deny-write; type identityref { base private-key-format; } description "Identifies the private key's format. Implementations SHOULD ensure that the incoming private key value is encoded in the specified format. For encrypted keys, the value is the decrypted key's format (i.e., the 'encrypted-value-format' conveys the encrypted key's format."; } choice private-key-type { nacm:default-deny-write; mandatory true; description "Choice between key types."; case cleartext-private-key { if-feature "cleartext-private-keys"; leaf cleartext-private-key { nacm:default-deny-all; type binary; must '../private-key-format'; description "The value of the binary key The key's value is interpreted by the 'private-key-format' field."; } } case hidden-private-key { if-feature "hidden-private-keys"; leaf hidden-private-key { type empty; must 'not(../private-key-format)'; description "A hidden key. How such keys are created is outside the scope of this module."; } } case encrypted-private-key { if-feature "encrypted-private-keys"; container encrypted-private-key { must '../private-key-format'; description "A container for the encrypted asymmetric private key value. The interpretation of the 'encrypted-value' node is via the 'private-key-format' node"; uses encrypted-value-grouping; } } } } grouping asymmetric-key-pair-grouping { description "A private key and, optionally, its associated public key. Implementations SHOULD ensure that the two keys, when both are specified, are a matching pair."; uses public-key-grouping { refine public-key-format { mandatory false; } refine public-key { mandatory false; } } uses private-key-grouping; } grouping certificate-expiration-grouping { description "A notification for when a certificate is about to, or already has, expired."; notification certificate-expiration { if-feature "certificate-expiration-notification"; description "A notification indicating that the configured certificate is either about to expire or has already expired. When to send notifications is an implementation specific decision, but it is RECOMMENDED that a notification be sent once a month for 3 months, then once a week for four weeks, and then once a day thereafter until the issue is resolved."; leaf expiration-date { type yang:date-and-time; mandatory true; description "Identifies the expiration date on the certificate."; } } } grouping trust-anchor-cert-grouping { description "A trust anchor certificate, and a notification for when it is about to (or already has) expire."; leaf cert-data { nacm:default-deny-write; type trust-anchor-cert-cms; description "The binary certificate data for this certificate."; } uses certificate-expiration-grouping; } grouping end-entity-cert-grouping { description "An end entity certificate, and a notification for when it is about to (or already has) expire. Implementations SHOULD assert that, where used, the end entity certificate contains the expected public key."; leaf cert-data { nacm:default-deny-write; type end-entity-cert-cms; description "The binary certificate data for this certificate."; } uses certificate-expiration-grouping; } grouping generate-csr-grouping { description "Defines the 'generate-csr' action."; action generate-csr { if-feature "csr-generation"; nacm:default-deny-all; description "Generates a certificate signing request structure for the associated asymmetric key using the passed subject and attribute values. This action statement is only available when the associated 'public-key-format' node's value is 'subject-public-key-info-format'."; reference "RFC 6125: Representation and Verification of Domain-Based Application Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the Context of Transport Layer Security (TLS)"; input { leaf csr-format { type identityref { base csr-format; } mandatory true; description "Specifies the format for the returned certificate."; } leaf csr-info { type csr-info; mandatory true; description "A CertificationRequestInfo structure, as defined in RFC 2986. Enables the client to provide a fully-populated CertificationRequestInfo structure that the server only needs to sign in order to generate the complete 'CertificationRequest' structure to return in the 'output'. The 'AlgorithmIdentifier' field contained inside the 'SubjectPublicKeyInfo' field MUST be one known to be supported by the device."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification RFC AAAA: YANG Data Types and Groupings for Cryptography"; } } output { choice csr-type { mandatory true; description "A choice amongst certificate signing request formats. Additional formats MAY be augmented into this 'choice' statement by future efforts."; case p10-csr { leaf p10-csr { type p10-csr; description "A CertificationRequest, as defined in RFC 2986."; } description "A CertificationRequest, as defined in RFC 2986."; reference "RFC 2986: PKCS #10: Certification Request Syntax Specification RFC AAAA: YANG Data Types and Groupings for Cryptography"; } } } } } // generate-csr-grouping grouping asymmetric-key-pair-with-cert-grouping { description "A private/public key pair and an associated certificate. Implementations SHOULD assert that the certificate contains the matching public key."; uses asymmetric-key-pair-grouping; uses end-entity-cert-grouping; uses generate-csr-grouping; } // asymmetric-key-pair-with-cert-grouping grouping asymmetric-key-pair-with-certs-grouping { description "A private/public key pair and a list of associated certificates. Implementations SHOULD assert that certificates contain the matching public key."; uses asymmetric-key-pair-grouping; container certificates { nacm:default-deny-write; description "Certificates associated with this asymmetric key."; list certificate { key "name"; description "A certificate for this asymmetric key."; leaf name { type string; description "An arbitrary name for the certificate."; } uses end-entity-cert-grouping { refine "cert-data" { mandatory true; } } } } uses generate-csr-grouping; } // asymmetric-key-pair-with-certs-grouping }¶
<CODE ENDS>¶
This document uses PKCS #10 [RFC2986] for the "generate-certificate-signing-request" action. The use of Certificate Request Message Format (CRMF) [RFC4211] was considered, but it was unclear if there was market demand for it. If it is desired to support CRMF in the future, a backwards compatible solution can be defined at that time.¶
Early revisions of this document included "rpc" statements for generating symmetric and asymmetric keys. These statements were removed due to an inability to obtain consensus for how to generically identify the key-algorithm to use. Hence, the solution presented in this document only supports keys to be configured via an external client.¶
Separate protocol-specific modules can present protocol-specific key-generating RPCs (e.g., the "generate-public-key" RPC in [I-D.ietf-netconf-ssh-client-server] and [I-D.ietf-netconf-tls-client-server]).¶
This module defines the "public-key-grouping" grouping, which enables the configuration of public keys without constraints on their usage, e.g., what operations the key is allowed to be used for (encryption, verification, both).¶
The "asymmetric-key-pair-grouping" grouping uses the aforementioned "public-key-grouping" grouping, and carries the same traits.¶
The "asymmetric-key-pair-with-cert-grouping" grouping uses the aforementioned "asymmetric-key-pair-grouping" grouping, whereby associated certificates may constrain the usage of the public key according to local policy.¶
This module defines the "asymmetric-key-pair-grouping" grouping, which enables the configuration of private keys without constraints on their usage, e.g., what operations the key is allowed to be used for (e.g., signature, decryption, both).¶
The "asymmetric-key-pair-with-cert-grouping" uses the aforementioned "asymmetric-key-pair-grouping" grouping, whereby configured certificates (e.g., identity certificates) may constrain the use of the public key according to local policy.¶
When accessing key values, it is desireable that implementations ensure that the strength of the keys being accessed is not greater than the strength of the underlying secure transport connection over which the keys are conveyed. However, comparing key strengths can be complicated and difficult to implement in practice.¶
That said, expert Security opinion suggests that already it is infeasible to break a 128-bit symmetric key using a classical computer, and thus the concern for conveying higher-strength keys begins to lose its allure.¶
Implementations SHOULD only use secure transport protocols meeting local policy. A reasonable policy may, e.g., state that only ciphersuites listed as "recommended" by the IETF be used (e.g., [RFC7525] for TLS).¶
The module contained within this document enables, only when specific "feature" statements are enabled, for the cleartext value of passwords and keys to be stored in the configuration database. Storing cleartext values for passwords and keys is NOT RECOMMENDED.¶
The module contained within this document enables passwords and keys to be encrypted. Passwords and keys may be encrypted via a symmetric key using the "cms-encrypted-data-format" format. This format uses the CMS EncryptedData structure, which allows any encryption algorithm to be used.¶
In order to thwart rainbow attacks, algorithms that result in a unique output for the same input SHOULD NOT be used. For instance, AES using "ECB" SHOULD NOT be used to encrypt values, whereas "CBC" mode is permissible since an unpredictable initialization vector (IV) MUST be used for each use.¶
This module defines storage for cleartext key values that SHOULD be zeroized when deleted, so as to prevent the remnants of their persisted storage locations from being analyzed in any meaningful way.¶
The cleartext key values are the "cleartext-key" node defined in the "symmetric-key-grouping" grouping (Section 2.1.4.3) and the "cleartext-private-key" node defined in the "asymmetric-key-pair-grouping" grouping ("Section 2.1.4.6).¶
The YANG module in this document defines "grouping" statements that are designed to be accessed via YANG based management protocols, such as NETCONF [RFC6241] and RESTCONF [RFC8040]. Both of these protocols have mandatory-to-implement secure transport layers (e.g., SSH, TLS) with mutual authentication.¶
The Network Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular users to a pre-configured subset of all available protocol operations and content.¶
Since the module in this document only defines groupings, these considerations are primarily for the designers of other modules that use these groupings.¶
Some of the readable data nodes defined in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:¶
The "cleartext-password" node:¶
The "cleartext-key" node:¶
The "cleartext-private-key" node:¶
The "cert-data" node:¶
All the writable data nodes defined by all the groupings defined in this module may be considered sensitive or vulnerable in some network environments. For instance, even the modification of a public key or a certificate can dramatically alter the implemented security policy. For this reason, the NACM extension "default-deny-write" has been applied to all the data nodes defined in the module.¶
Some of the operations in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control access to these operations. These are the operations and their sensitivity/vulnerability:¶
generate-certificate-signing-request:¶
This document registers one URI in the "ns" subregistry of the "IETF XML" registry [RFC3688]. Following the format in [RFC3688], the following registration is requested:¶
URI: urn:ietf:params:xml:ns:yang:ietf-crypto-types Registrant Contact: The IESG XML: N/A, the requested URI is an XML namespace.¶
This document registers one YANG module in the "YANG Module Names" registry [RFC6020]. Following the format in [RFC6020], the following registration is requested:¶
name: ietf-crypto-types namespace: urn:ietf:params:xml:ns:yang:ietf-crypto-types prefix: ct reference: RFC AAAA¶
This section is to be removed before publishing as an RFC.¶
The authors would like to thank for following for lively discussions on list and in the halls (ordered by first name): Balázs Kovács, Eric Voit, Juergen Schoenwaelder, Liang Xia, Martin Björklund, Mahesh Jethanandani, Nick Hancock, Rich Salz, Rob Wilton, Russ Housley, Sandra Murphy, Tom Petch, Valery Smyslov, and Wang Haiguang.¶