Internet-Draft | HTTP UDP CONNECT | April 2022 |
Schinazi | Expires 13 October 2022 | [Page] |
This document describes how to proxy UDP over HTTP. Similar to how the CONNECT method allows proxying TCP over HTTP, this document defines a new mechanism to proxy UDP. When using HTTP/2 or HTTP/3, it uses Extended CONNECT; when using HTTP/1.1, it uses Upgrade.¶
This note is to be removed before publishing as an RFC.¶
The latest revision of this draft can be found at https://ietf-wg-masque.github.io/draft-ietf-masque-connect-udp/draft-ietf-masque-connect-udp.html. Status information for this document may be found at https://datatracker.ietf.org/doc/draft-ietf-masque-connect-udp/.¶
Discussion of this document takes place on the MASQUE Working Group mailing list (mailto:masque@ietf.org), which is archived at https://mailarchive.ietf.org/arch/browse/masque/.¶
Source for this draft and an issue tracker can be found at https://github.com/ietf-wg-masque/draft-ietf-masque-connect-udp.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 13 October 2022.¶
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
This document describes how to proxy UDP over HTTP. Similar to how the CONNECT method (see Section 9.3.6 of [HTTP]) allows proxying TCP [TCP] over HTTP, this document defines a new mechanism to proxy UDP [UDP].¶
UDP Proxying supports all versions of HTTP and uses HTTP Datagrams [HTTP-DGRAM]. When using HTTP/2 [HTTP/2] or HTTP/3 [HTTP/3], UDP proxying uses HTTP Extended CONNECT as described in [EXT-CONNECT2] and [EXT-CONNECT3]. When using HTTP/1.x [HTTP/1.1], UDP proxying uses HTTP Upgrade as defined in Section 7.8 of [HTTP].¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
In this document, we use the term "proxy" to refer to the HTTP server that acts upon the client's UDP proxying request to open a UDP socket to a target server, and generates the response to this request. If there are HTTP intermediaries (as defined in Section 3.7 of [HTTP]) between the client and the proxy, those are referred to as "intermediaries" in this document.¶
Note that, when the HTTP version in use does not support multiplexing streams (such as HTTP/1.1), any reference to "stream" in this document represents the entire connection.¶
Clients are configured to use UDP Proxying over HTTP via a URI Template [TEMPLATE] with the variables "target_host" and "target_port". Examples are shown below:¶
The following requirements apply to the URI Template:¶
If any of the requirements above are not met by a URI Template, the client MUST reject its configuration and fail the request without sending it to the proxy.¶
Since the original HTTP CONNECT method allowed conveying the target host and port but not the scheme, proxy authority, path, nor query, there exist proxy configuration interfaces that only allow the user to configure the proxy host and the proxy port. Client implementations of this specification that are constrained by such limitations MAY attempt to access UDP Proxying capabilities using the default template, which is defined as: "https://$PROXY_HOST:$PROXY_PORT/.well-known/masque/udp/{target_host}/{target_port}/" where $PROXY_HOST and $PROXY_PORT are the configured host and port of the proxy respectively. Proxy deployments SHOULD offer service at this location if they need to interoperate with such clients.¶
Clients MAY interpret HTTP 400, 404, or 405 response codes as indications that the URI template is not correct. Servers MUST NOT return these response codes if the request is well-formed and the URI matches a supported template.¶
This document defines the "connect-udp" HTTP Upgrade Token. "connect-udp" uses the Capsule Protocol as defined in Section 3.2 of [HTTP-DGRAM]. The format of HTTP Datagrams is defined in Section 5.¶
Clients issue requests containing a "connect-udp" upgrade token to initiate a UDP tunnel associated with a single HTTP stream. Tunnels are commonly used to create an end-to-end virtual connection, which can then be secured using QUIC [QUIC] or another protocol running over UDP. The target of the tunnel is indicated by the client to the proxy via the "target_host" and "target_port" variables of the URI Template (see Section 2). If the request is successful, the proxy commits to converting received HTTP Datagrams into UDP packets and vice versa until the tunnel is closed.¶
When sending its UDP proxying request, the client SHALL perform URI Template expansion to determine the path and query of its request. target_host supports using DNS names, IPv6 literals and IPv4 literals. Note that this URI Template expansion requires using pct-encoding, so for example if the target_host is "2001:db8::42", it will be encoded in the URI as "2001%3Adb8%3A%3A42".¶
By virtue of the definition of the Capsule Protocol (see [HTTP-DGRAM]), UDP proxying requests do not carry any message content. Similarly, successful UDP proxying responses also do not carry any message content.¶
Responses to UDP proxying requests are not cacheable.¶
Upon receiving a UDP proxying request, the recipient proxy extracts the "target_host" and "target_port" variables from the URI it has reconstructed from the request headers, and establishes a tunnel by directly opening a UDP socket to the requested target.¶
Unlike TCP, UDP is connection-less. The proxy that opens the UDP socket has no way of knowing whether the destination is reachable. Therefore it needs to respond to the request without waiting for a packet from the target. However, if the target_host is a DNS name, the proxy MUST perform DNS resolution before replying to the HTTP request. If errors occur during this process (for example, a DNS resolution failure), the proxy MUST fail the request and SHOULD send details using the Proxy-Status header field [PROXY-STATUS].¶
Proxies can use connected UDP sockets if their operating system supports them, as that allows the proxy to rely on the kernel to only send it UDP packets that match the correct 5-tuple. If the proxy uses a non-connected socket, it MUST validate the IP source address and UDP source port on received packets to ensure they match the client's request. Packets that do not match MUST be discarded by the proxy.¶
The lifetime of the socket is tied to the request stream. The proxy MUST keep the socket open while the request stream is open. If a proxy is notified by its operating system that its socket is no longer usable (for example, this can happen when an ICMP "Destination Unreachable" message is received, see Section 3.1 of [ICMP6]), it MUST close the request stream. Proxies MAY choose to close sockets due to a period of inactivity, but they MUST close the request stream when closing the socket. Proxies that close sockets after a period of inactivity SHOULD NOT use a period lower than two minutes, see Section 4.3 of [BEHAVE].¶
A successful response (as defined in Section 3.3 and Section 3.5) indicates that the proxy has opened a socket to the requested target and is willing to proxy UDP payloads. Any response other than a successful response indicates that the request has failed, and the client MUST therefore abort the request.¶
Proxies MUST NOT introduce fragmentation at the IP layer when forwarding HTTP Datagrams onto a UDP socket. In IPv4, the Don't Fragment (DF) bit MUST be set if possible, to prevent fragmentation on the path. Future extensions MAY remove these requirements.¶
When using HTTP/1.1 [HTTP/1.1], a UDP proxying request will meet the following requirements:¶
For example, if the client is configured with URI Template "https://proxy.example.org/.well-known/masque/udp/{target_host}/{target_port}/" and wishes to open a UDP proxying tunnel to target 192.0.2.42:443, it could send the following request:¶
The proxy SHALL indicate a successful response by replying with the following requirements:¶
If any of these requirements are not met, the client MUST treat this proxying attempt as failed and abort the connection.¶
For example, the proxy could respond with:¶
When using HTTP/2 [HTTP/2] or HTTP/3 [HTTP/3], UDP proxying requests use Extended CONNECT. This requires that servers send an HTTP Setting as specified in [EXT-CONNECT2] and [EXT-CONNECT3], and that requests use HTTP pseudo-header fields with the following requirements:¶
A UDP proxying request that does not conform to these restrictions is malformed (see Section 8.1.1 of [HTTP/2]).¶
For example, if the client is configured with URI Template "https://proxy.example.org/{target_host}/{target_port}/" and wishes to open a UDP proxying tunnel to target 192.0.2.42:443, it could send the following request:¶
The proxy SHALL indicate a successful response by replying with any 2xx (Successful) HTTP status code, without any Transfer-Encoding or Content-Length header fields.¶
If any of these requirements are not met, the client MUST treat this proxying attempt as failed and abort the request.¶
For example, the proxy could respond with:¶
[[RFC editor: please remove this section before publication.]]¶
In order to allow implementations to support multiple draft versions of this specification during its development, we introduce the "connect-udp-version" header field. When sent by the client, it contains a list of draft numbers supported by the client (e.g., "connect-udp-version: 0, 2"). When sent by the proxy, it contains a single draft number selected by the proxy from the list provided by the client (e.g., "connect-udp-version: 2"). Sending this header field is RECOMMENDED but not required. The "connect-udp-version" header field is a List Structured Field, see Section 3.1 of [STRUCT-FIELD]. Each list member MUST be an Integer.¶
This protocol allows future extensions to exchange HTTP Datagrams which carry different semantics from UDP payloads. Some of these extensions can augment UDP payloads with additional data, while others can exchange data that is completely separate from UDP payloads. In order to accomplish this, all HTTP Datagrams associated with UDP Proxying request streams start with a context ID, see Section 5.¶
Context IDs are 62-bit integers (0 to 262-1). Context IDs are encoded as variable-length integers, see Section 16 of [QUIC]. The context ID value of 0 is reserved for UDP payloads, while non-zero values are dynamically allocated: non-zero even-numbered context IDs are client-allocated, and odd-numbered context IDs are proxy-allocated. The context ID namespace is tied to a given HTTP request: it is possible for a context ID with the same numeric value to be simultaneously allocated in distinct requests, potentially with different semantics. Context IDs MUST NOT be re-allocated within a given HTTP namespace but MAY be allocated in any order. The context ID allocation restrictions to the use of even-numbered and odd-numbered context IDs exist in order to avoid the need for synchronisation between endpoints. However, once a context ID has been allocated, those restrictions do not apply to the use of the context ID: it can be used by any client or proxy, independent of which endpoint initially allocated it.¶
Registration is the action by which an endpoint informs its peer of the semantics and format of a given context ID. This document does not define how registration occurs. Future extensions MAY use HTTP header fields or capsules to register contexts. Depending on the method being used, it is possible for datagrams to be received with Context IDs which have not yet been registered, for instance due to reordering of the packet containing the datagram and the packet containing the registration message during transmission.¶
When HTTP Datagrams (see [HTTP-DGRAM]) are associated with UDP proxying request streams, the HTTP Datagram Payload field has the format defined in Figure 6. Note that when HTTP Datagrams are encoded using QUIC DATAGRAM frames, the Context ID field defined below directly follows the Quarter Stream ID field which is at the start of the QUIC DATAGRAM frame payload:¶
A variable-length integer (see Section 16 of [QUIC]) that contains the value of the Context ID. If an HTTP/3 datagram which carries an unknown Context ID is received, the receiver SHALL either drop that datagram silently or buffer it temporarily (on the order of a round trip) while awaiting the registration of the corresponding Context ID.¶
The payload of the datagram, whose semantics depend on value of the previous field. Note that this field can be empty.¶
UDP packets are encoded using HTTP Datagrams with the Context ID set to zero. When the Context ID is set to zero, the Payload field contains the unmodified payload of a UDP packet (referred to as "data octets" in [UDP]).¶
Clients MAY optimistically start sending UDP packets in HTTP Datagrams before receiving the response to its UDP proxying request. However, implementors should note that such proxied packets may not be processed by the proxy if it responds to the request with a failure, or if the proxied packets are received by the proxy before the request.¶
By virtue of the definition of the UDP header [UDP], it is not possible to encode UDP payloads longer than 65527 bytes. Therefore, endpoints MUST NOT send HTTP Datagrams with a Payload field longer than 65527 using Context ID zero. An endpoint that receives a DATAGRAM capsule using Context ID zero whose Payload field is longer than 65527 MUST abort the stream. If a proxy knows it can only send out UDP packets of a certain length due to its underlying link MTU, it SHOULD discard incoming DATAGRAM capsules using Context ID zero whose Payload field is longer than that limit without buffering the capsule contents.¶
Proxies SHOULD strive to avoid increasing burstiness of UDP traffic: they SHOULD NOT queue packets in order to increase batching.¶
When the protocol running over UDP that is being proxied uses congestion control (e.g., [QUIC]), the proxied traffic will incur at least two nested congestion controllers. This can reduce performance but the underlying HTTP connection MUST NOT disable congestion control unless it has an out-of-band way of knowing with absolute certainty that the inner traffic is congestion-controlled.¶
If a client or proxy with a connection containing a UDP proxying request stream disables congestion control, it MUST NOT signal ECN support on that connection. That is, it MUST mark all IP headers with the Not-ECT codepoint. It MAY continue to report ECN feedback via ACK_ECN frames, as the peer may not have disabled congestion control.¶
When the protocol running over UDP that is being proxied uses loss recovery (e.g., [QUIC]), and the underlying HTTP connection runs over TCP, the proxied traffic will incur at least two nested loss recovery mechanisms. This can reduce performance as both can sometimes independently retransmit the same data. To avoid this, UDP proxying SHOULD be performed over HTTP/3 to allow leveraging the QUIC DATAGRAM frame.¶
When using HTTP/3 with the QUIC Datagram extension [DGRAM], UDP payloads are transmitted in QUIC DATAGRAM frames. Since those cannot be fragmented, they can only carry payloads up to a given length determined by the QUIC connection configuration and the path MTU. If a proxy is using QUIC DATAGRAM frames and it receives a UDP payload from the target that will not fit inside a QUIC DATAGRAM frame, the proxy SHOULD NOT send the UDP payload in a DATAGRAM capsule, as that defeats the end-to-end unreliability characteristic that methods such as Datagram Packetization Layer Path MTU Discovery (DPLPMTUD) depend on [DPLPMTUD]. In this scenario, the proxy SHOULD drop the UDP payload and send an ICMP "Packet Too Big" message to the target, see Section 3.2 of [ICMP6].¶
UDP proxying does not create an IP-in-IP tunnel, so the guidance in [ECN-TUNNEL] about transferring ECN marks between inner and outer IP headers does not apply. There is no inner IP header in UDP proxying tunnels.¶
Note that UDP proxying clients do not have the ability in this specification to control the ECN codepoints on UDP packets the proxy sends to the target, nor can proxies communicate the markings of each UDP packet from target to proxy.¶
A UDP proxy MUST ignore ECN bits in the IP header of UDP packets received from the target, and MUST set the ECN bits to Not-ECT on UDP packets it sends to the target. These do not relate to the ECN markings of packets sent between client and proxy in any way.¶
There are significant risks in allowing arbitrary clients to establish a tunnel to arbitrary targets, as that could allow bad actors to send traffic and have it attributed to the proxy. Proxies that support UDP proxying ought to restrict its use to authenticated users.¶
Because the CONNECT method creates a TCP connection to the target, the target has to indicate its willingness to accept TCP connections by responding with a TCP SYN-ACK before the proxy can send it application data. UDP doesn't have this property, so a UDP proxy could send more data to an unwilling target than a CONNECT proxy. However, in practice denial of service attacks target open TCP ports so the TCP SYN-ACK does not offer much protection in real scenarios. While a proxy could potentially limit the number of UDP packets it is willing to forward until it has observed a response from the target, that is unlikely to provide any protection against denial of service attacks because such attacks target open UDP ports where the protocol running over UDP would respond, and that would be interpreted as willingness to accept UDP by the proxy.¶
UDP sockets for UDP proxying have a different lifetime than TCP sockets for CONNECT, therefore implementors would be well served to follow the advice in Section 3.1 if they base their UDP proxying implementation on a preexisting implementation of CONNECT.¶
The security considerations described in [HTTP-DGRAM] also apply here.¶
This document will request IANA to register "connect-udp" in the "HTTP Upgrade Tokens" registry maintained at <https://www.iana.org/assignments/http-upgrade-tokens>.¶
This document will request IANA to register "masque/udp" in the "Well-Known URIs" registry maintained at <https://www.iana.org/assignments/well-known-uris>.¶
This document is a product of the MASQUE Working Group, and the author thanks all MASQUE enthusiasts for their contibutions. This proposal was inspired directly or indirectly by prior work from many people. In particular, the author would like to thank Eric Rescorla for suggesting to use an HTTP method to proxy UDP. Thanks to Lucas Pardue for their inputs on this document. The extensibility design in this document came out of the HTTP Datagrams Design Team, whose members were Alan Frindell, Alex Chernyakhovsky, Ben Schwartz, Eric Rescorla, Lucas Pardue, Marcus Ihlar, Martin Thomson, Mike Bishop, Tommy Pauly, Victor Vasiliev, and the author of this document.¶