Internet-Draft | In-situ OAM IPv6 encapsulation | October 2022 |
Bhandari & Brockners | Expires 14 April 2023 | [Page] |
In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document outlines how IOAM data fields are encapsulated in IPv6.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 14 April 2023.¶
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document outlines how IOAM data fields are encapsulated in the IPv6 [RFC8200] and discusses deployment options for networks that use IPv6-encapsulated IOAM data fields. These options have distinct deployment considerations; for example, the IOAM domain can either be between hosts, or be between IOAM encapsulating and decapsulating network nodes that forward traffic, such as routers.¶
This document was the collective effort of several authors. The text and content were contributed by the editors and the co-authors listed below. The contact information of the co-authors appears at the end of this document.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
Abbreviations used in this document:¶
In-situ OAM in IPv6 is used to enhance diagnostics of IPv6 networks. It complements other mechanisms designed to enhance diagnostics of IPv6 networks, such as the IPv6 Performance and Diagnostic Metrics Destination Option described in [RFC8250].¶
IOAM data fields can be encapsulated in "option data" fields using two types of extension headers in IPv6 packets - either Hop-by-Hop Options header or Destination options header. Multiple options with the same Option Type MAY appear in the same Hop-by-Hop Options or Destination Options header, with distinct content.¶
In order for IOAM to work in IPv6 networks, IOAM MUST be explicitly enabled per interface on every node within the IOAM domain. Unless a particular interface is explicitly enabled (i.e., explicitly configured) for IOAM, a router MUST ignore IOAM Options. As additional security, IOAM domains MUST provide a mechanism to prevent unauthorized injections at ingress or leaks at egress.¶
An IPv6 packet carrying IOAM data in an Extension header can have other extension headers, compliant with [RFC8200].¶
IPv6 Hop-by-Hop and Destination Option format for carrying in-situ OAM data fields:¶
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Option Type | Opt Data Len | Reserved | IOAM Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | | | . . I . . O . . A . . M . . . . Option Data . O . . P . . T . . I . . O . . N | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+¶
IOAM Option data is inserted as follows:¶
Pre-allocated Trace Option: The in-situ OAM Preallocated Trace Option-Type defined in [RFC9197] is represented as an IPv6 option in the Hop-by-Hop extension header:¶
Incremental Trace Option: The in-situ OAM Incremental Trace Option-Type defined in [RFC9197] is represented as an IPv6 option in the Hop-by-Hop extension header:¶
Proof of Transit Option: The in-situ OAM POT Option-Type defined in [RFC9197] is represented as an IPv6 option in the Hop-by-Hop extension header:¶
Edge to Edge Option: The in-situ OAM E2E option defined in [RFC9197] is represented as an IPv6 option in Destination extension header:¶
Direct Export (DEX) Option: The in-situ OAM Direct Export Option-Type defined in [I-D.ietf-ippm-ioam-direct-export] is represented as an IPv6 option in the Hop-by-Hop extension header:¶
All the in-situ OAM IPv6 options defined here have alignment requirements. Specifically, they all require 4n alignment. This ensures that fields specified in [RFC9197] are aligned at a multiple-of-4 offset from the start of the Hop-by-Hop and Destination Options header. In addition, to maintain IPv6 extension header 8-octet alignment and avoid the need to add or remove padding at every hop, the Trace-Type for Incremental Trace Option in IPv6 MUST be selected such that the IOAM node data length is a multiple of 8-octets.¶
IPv6 options can have a maximum length of 255 octets. Consequently, the total length of IOAM Option-Types including all data fields is also limited to 255 octets when encapsulated into IPv6.¶
IOAM deployments in IPv6 networks should take the following considerations and requirements into account:¶
For deployments where the IOAM domain is bounded by hosts, hosts will perform the operation of IOAM data field encapsulation and decapsulation. IOAM data is carried in IPv6 packets as Hop-by-Hop or Destination options as specified in this document.¶
For deployments where the IOAM domain is bounded by network devices, network devices such as routers form the edge of an IOAM domain. Network devices will perform the operation of IOAM data field encapsulation and decapsulation.¶
This section lists out possible deployment options that can be employed to meet the requirements listed in Section 5.1.¶
The "IP-in-IPv6 encapsulation with ULA" [RFC4193] approach can be used to apply IOAM to either an IPv6 or an IPv4 network. In addition, it fulfills requirement C4 (avoid leaks) by using ULA for the IOAM Overlay Network. The original IP packet is preserved. An IPv6 header including IOAM data fields in an extension header is added in front of it, to forward traffic within and across the IOAM domain. IPv6 addresses for the IOAM Overlay Network, i.e. the outer IPv6 addresses are assigned from the ULA space. Addressing and routing in the IOAM Overlay Network are to be configured so that the IP-in-IPv6 encapsulated packets follow the same path as the original, non-encapsulated packet would have taken. This would create an internal IPv6 forwarding topology using the IOAM domain's interior ULA address space which is parallel with the forwarding topology that exists with the non-IOAM address space (the topology and address space that would be followed by packets that do not have supplemental IOAM information). Establishment and maintenance of the parallel IOAM ULA forwarding topology could be automated, e.g., similar to how LDP [RFC5036] is used in MPLS to establish and maintain an LSP forwarding topology that is parallel to the network's IGP forwarding topology.¶
Transit across the IOAM Overlay Network could leverage the transit approach for traffic between BGP border routers, as described in [RFC1772], "A.2.3 Encapsulation". Assuming that the operational guidelines specified in Section 4 of [RFC4193] are properly followed, the probability of leaks in this approach will be almost close to zero. If the packets do leak through IOAM egress device misconfiguration or partial IOAM egress device failure, the packets' ULA destination address is invalid outside of the IOAM domain. There is no exterior destination to be reached, and the packets will be dropped when they encounter either a router external to the IOAM domain that has a packet filter that drops packets with ULA destinations, or a router that does not have a default route.¶
In some cases it is desirable to monitor a domain that uses an overlay network that is deployed independently of the need for IOAM, e.g., an overlay network that runs Geneve-in-IPv6, or VXLAN-in-IPv6. In this case IOAM can be encapsulated in as an extension header in the tunnel (outer) IPv6 header. Thus, the tunnel encapsulating node is also the IOAM encapsulating node, and the tunnel end point is also the IOAM decapsulating node.¶
This document describes the encapsulation of IOAM data fields in IPv6. Security considerations of the specific IOAM data fields for each case (i.e., Trace, Proof of Transit, and E2E) are described and defined in [RFC9197].¶
As this document describes new options for IPv6, these are similar to the security considerations of [RFC8200] and the weakness documented in [RFC8250].¶
This draft requests the following IPv6 Option Type assignments from the Destination Options and Hop-by-Hop Options sub-registry of Internet Protocol Version 6 (IPv6) Parameters.¶
http://www.iana.org/assignments/ipv6-parameters/ipv6- parameters.xhtml#ipv6-parameters-2¶
Hex Value Binary Value Description Reference act chg rest ------------------------------------------------------------------ TBD_1_0 00 0 TBD_1 IOAM [This draft] destination option and IOAM hop-by-hop option TBD_1_1 00 1 TBD_1 IOAM [This draft] destination option and IOAM hop-by-hop option¶
The authors would like to thank Tom Herbert, Eric Vyncke, Nalini Elkins, Srihari Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya Nadahalli, Stefano Previdi, Hemant Singh, Erik Nordmark, LJ Wobker, Mark Smith, Andrew Yourtchenko and Justin Iurman for the comments and advice. For the IPv6 encapsulation, this document leverages concepts described in [I-D.kitamura-ipv6-record-route]. The authors would like to acknowledge the work done by the author Hiroshi Kitamura and people involved in writing it.¶
Carlos Pignataro Cisco Systems, Inc. 7200-11 Kit Creek Road Research Triangle Park, NC 27709 United States Email: cpignata@cisco.com Hannes Gredler RtBrick Inc. Email: hannes@rtbrick.com John Leddy Email: john@leddy.net Stephen Youell JP Morgan Chase 25 Bank Street London E14 5JP United Kingdom Email: stephen.youell@jpmorgan.com Tal Mizrahi Huawei Network.IO Innovation Lab Israel Email: tal.mizrahi.phd@gmail.com Aviv Kfir Mellanox Technologies, Inc. 350 Oakmead Parkway, Suite 100 Sunnyvale, CA 94085 U.S.A. Email: avivk@mellanox.com Barak Gafni Mellanox Technologies, Inc. 350 Oakmead Parkway, Suite 100 Sunnyvale, CA 94085 U.S.A. Email: gbarak@mellanox.com Petr Lapukhov Facebook 1 Hacker Way Menlo Park, CA 94025 US Email: petr@fb.com Mickey Spiegel Barefoot Networks, an Intel company 4750 Patrick Henry Drive Santa Clara, CA 95054 US Email: mickey.spiegel@intel.com Suresh Krishnan Kaloom Email: suresh@kaloom.com Rajiv Asati Cisco Systems, Inc. 7200 Kit Creek Road Research Triangle Park, NC 27709 US Email: rajiva@cisco.com Mark Smith PO BOX 521 HEIDELBERG, VIC 3084 AU Email: markzzzsmith+id@gmail.com¶