TOC |
|
This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.
This Internet-Draft will expire on January 1, 2010.
Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
The forwarding and Control Element Separation (ForCES) protocol defines a standard communication and control mechanism through which a Control Element (CE) can control the behavior of a Forwarding Element (FE). That control is accomplished through manipulating components of Logical Function Blocks (LFBs), whose structure is defined in a model RFC produced by the working group.In order to build an actual solution using this protocol, there needs to be a set of Logical Function Block definitions that can be instantiated by FEs and controlled by CEs. This document provides a sample space of such definitions. It is anticipated that additional defining documents will be produced over time.
1.
Terminology and Conventions
1.1.
Requirements Language
2.
Definitions
3.
Introduction
4.
Base Definitions
4.1.
Framedefs
4.2.
DataTypeDefs
4.3.
MetaDataDefs
5.
LFB Descriptions
5.1.
Core LFBs
5.1.1.
FEObject LFB
5.1.2.
FEProtocol LFB
5.2.
Port LFBs
5.2.1.
GenericConnectivityLFB
5.2.2.
EtherPort
5.2.3.
EtherDecap
5.2.4.
EtherEncap
5.3.
Address LFBs
5.3.1.
IPv6AddrResolution
5.3.2.
Arp
5.3.3.
ICMPGenerator
5.3.4.
ICMPv6Generator
5.3.5.
IPv4Validator
5.3.6.
IPv6Validator
5.4.
Forwarding LFBs
5.4.1.
IPv4UcastLPM
5.4.2.
IPv4NextHopApplicator
5.4.3.
IPv6UcastLPM
5.4.4.
IPv6UcastNexthopApplicator
5.5.
Queue and scheduler LFBs
5.5.1.
Scheduler
5.5.2.
Queue
5.5.3.
WRRSched
5.6.
Miscellanious LFBs
5.6.1.
ExtendHeaderProc
5.6.2.
MetadataClassifier
5.6.3.
OptionProc
5.6.4.
RedirectLFB
5.6.5.
PacketTrimmer
5.6.6.
Duplicator
5.6.7.
ArbitraryClassifierLFB
6.
LFB Library Definition
7.
LFB Use Case
8.
Contributors
9.
Acknowledgements
10.
IANA Considerations
11.
Security Considerations
12.
References
12.1.
Normative References
12.2.
Informative References
§
Authors' Addresses
TOC |
TOC |
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.).
TOC |
This document follows the terminology defined by the ForCES Requirements in [RFC3654] (Khosravi, H. and T. Anderson, “Requirements for Separation of IP Control and Forwarding,” November 2003.)and by the ForCES framework in [RFC3746] (Yang, L., Dantu, R., Anderson, T., and R. Gopal, “Forwarding and Control Element Separation (ForCES) Framework,” April 2004.). The definitions below are repeated below for clarity.
- Control Element (CE) - A logical entity that implements the ForCES protocol and uses it to instruct one or more FEs on how to process packets. CEs handle functionality such as the execution of control and signaling protocols.
- Forwarding Element (FE) - A logical entity that implements the ForCES protocol. FEs use the underlying hardware to provide per-packet processing and handling as directed/controlled by one or more CEs via the ForCES protocol.
- ForCES Network Element (NE) - An entity composed of one or more CEs and one or more FEs. To entities outside an NE, the NE represents a single point of management. Similarly, an NE usually hides its internal organization from external entities.
- LFB (Logical Function Block) - The basic building block that is operated on by the ForCES protocol. The LFB is a well defined, logically separable functional block that resides in an FE and is controlled by the CE via ForCES protocol. The LFB may reside at the FE's datapath and process packets or may be purely an FE control or configuration entity that is operated on by the CE. Note that the LFB is a functionally accurate abstraction of the FE's processing capabilities, but not a hardware-accurate representation of the FE implementation.
- FE Topology - A representation of how the multiple FEs within a single NE are interconnected. Sometimes this is called inter-FE topology, to be distinguished from intra-FE topology (i.e., LFB topology).
- LFB Class and LFB Instance - LFBs are categorized by LFB Classes. An LFB Instance represents an LFB Class (or Type) existence. There may be multiple instances of the same LFB Class (or Type) in an FE. An LFB Class is represented by an LFB Class ID, and an LFB Instance is represented by an LFB Instance ID. As a result, an LFB Class ID associated with an LFB Instance ID uniquely specifies an LFB existence.
- LFB Metadata - Metadata is used to communicate per-packet state from one LFB to another, but is not sent across the network. The FE model defines how such metadata is identified, produced and consumed by the LFBs. It defines the functionality but not how metadata is encoded within an implementation.
- LFB Component - Operational parameters of the LFBs that must be visible to the CEs are conceptualized in the FE model as the LFB components. The LFB components include, for example, flags, single parameter arguments, complex arguments, and tables that the CE can read and/or write via the ForCES protocol (see below).
- LFB Topology - Representation of how the LFB instances are logically interconnected and placed along the datapath within one FE. Sometimes it is also called intra-FE topology, to be distinguished from inter-FE topology.
- ForCES Protocol - While there may be multiple protocols used within the overall ForCES architecture, the term "ForCES protocol" and "protocol" refer to the Fp reference points in the ForCES Framework in [RFC3746]. This protocol does not apply to CE-to-CE communication, FE-to-FE communication, or to communication between FE and CE managers. Basically, the ForCES protocol works in a master- slave mode in which FEs are slaves and CEs are masters. This document defines the specifications for this ForCES protocol.
TOC |
XXX: Editorial Note: This is an initial rough copy of the document which will undergo heavy review and modification. It was published to beat the meeting deadline.
Forwarding and Control Element Separation (ForCES) defines an architectural framework and associated protocols to standardize information exchange between the control plane and the forwarding plane in a ForCES Network Element (ForCES NE). [RFC3654] (Khosravi, H. and T. Anderson, “Requirements for Separation of IP Control and Forwarding,” November 2003.)has defined the ForCES requirements, and [RFC3746] (Yang, L., Dantu, R., Anderson, T., and R. Gopal, “Forwarding and Control Element Separation (ForCES) Framework,” April 2004.) has defined the ForCES framework.
The ForCES protocol Protocol FE-protocol (Dong, L., Doria, A., Gopal, R., HAAS, R., Salim, J., Khosravi, H., and W. Wang, “ForCES Protocol Specification,” March 2009.) [I‑D.ietf‑forces‑protocol] defines a protocol by which Control Elements (CEs) communicated with and control the behavior of Forwarding Elements (FEs). That control is expressed in terms of manipulations of components of Logical Function Blocks (LFBs). The structure and abstract semantics of LFBs is defined in Model FE-MODEL (Halpern, J. and J. Salim, “ForCES Forwarding Element Model,” October 2008.) [I‑D.ietf‑forces‑model]. That document also defines a single LFB Class for gaining access to FE properties including the set of LFBs and their interconnection. The Protocol document defines an LFB class for manipulating the protocol properties of the FE.
In order for the protocol to be useful to control any behavior, there must be a set of LFB class definitions for the LFBs which provide that behavior. This document provides a set of such definitions. This document is intended to provide an initial LFB library. It is expected that other definitions will be developed over time, and documented in other RFCs.
An LFB performs a well-defined action or computation on the packets passing through it. Upon completion of its prescribed function, either the packets are modified in certain ways (e.g., decapsulator, marker), or some results are generated and stored, often in the form of metadata (e.g., classifier). Each LFB typically performs a single action. Classifiers, shapers and meters are all examples of such LFBs.
In general, multiple LFBs are contained in one FE. An LFB, may have inputs, outputs and components that can be queried and manipulated by the CE via the ForCES Protocol. An LFB can have one or more inputs. Each input takes a pair of a packet and its associated metadata. The LFB processes the input, and produces one or more outputs, each of which is a pair of a packet and its associated metadata.
For further information regarding the LFB model, the reader is referenced to FE-MODEL (Halpern, J. and J. Salim, “ForCES Forwarding Element Model,” October 2008.) [I‑D.ietf‑forces‑model].
XXX: The above text is redundant. The definition gives some intro to LFBs and the model and all the other docs before this tell us what an LFB is
In this document we first define base structures used in building the LFBs in section 4 then use those base definitions to define various LFBs.
To simplify the understanding of these LFBs - we have chosen to group them by functionality. The following groups of LFBs will be described in section 5:
TOC |
This section povides a base set of LFB frame, data type, and meta data definitions for use by all any LFB Class definitions (in this or other documents. This section provides no actual LFB Class definitions.
These are then used in each subsequent definition by the statement:
<load library="Base"/>
TOC |
The following Frames are defined:
<frameDefs> <frameDef> <name>EthernetII</name> <synopsis>An Ethernet II frame type</synopsis> </frameDef> <frameDef> <name>Ethernet802.3</name> <synopsis>An Ethernet 802.3 frame type</synopsis> </frameDef> <frameDef> <name>Ethernet802.2</name> <synopsis>An Ethernet 802.2 frame type</synopsis> </frameDef> <frameDef> <name>Ethernet802.2SNAP</name> <synopsis>An Ethernet 802.2 with SNAP frame</synopsis> </frameDef> <frameDef> <name>IPv4Frame</name> <synopsis>An IPv4 packet</synopsis> </frameDef> <frameDef> <name>IPv6Frame</name> <synopsis>An IPv6 packet</synopsis> </frameDef> <frameDef> <name>taggedFrame</name> <synopsis>A frame of any type with associated metadata.</synopsis> </frameDef> <frameDef> <name>MetadataFrame</name> <synopsis>Frame only contains meta data</synopsis> </frameDef> <frameDef> <name>Arbitrary</name> <synopsis>Any kind of frame except Metadata Frame.</synopsis> </frameDef> </frameDefs>
TOC |
The following Data Types are defined:
<dataTypeDefs> <dataTypeDef> <name>ifIndex</name> <synopsis>A Port Identifier</synopsis> <typeRef>uint32</typeRef> </dataTypeDef> <dataTypeDef> <name>IEEEMAC</name> <synopsis>IEEE MAC Address</synopsis> <typeRef>byte[6]</typeRef> </dataTypeDef> <dataTypeDef> <name>NetSpeedType</name> <synopsis>Network speed values</synopsis> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x00000001"> <name>LAN_SPEED_10M</name> <synopsis>10M Ethernet</synopsis> </specialValue> <specialValue value="0x00000002"> <name>LAN_SPEED_100M</name> <synopsis>100M Ethernet</synopsis> </specialValue> <specialValue value="0x00000003"> <name>LAN_SPEED_1G</name> <synopsis>1000M Ethernet</synopsis> </specialValue> <specialValue value="0x00000004"> <name>LAN_SPEED_10G</name> <synopsis>10G Ethernet</synopsis> </specialValue> <specialValue value="0x00000005"> <name>LAN_SPEED_AUTO</name> <synopsis>LAN speed auto</synopsis> </specialValue> </specialValues> <!--XXX:This doesnt look like the SNMP definitions. We should look at the SNMP definitions for guidance; we should not have limitations that SNMP has such as being restricted to 32 bits" "refer to RFC 3635 ifSpeed and ifHighSpeed" --> </atomic> </dataTypeDef> <dataTypeDef> <name>IEEENegotiationType</name> <synopsis>IEEENegotiation types</synopsis> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x00000001"> <name>Auto</name> <synopsis>Auto negotitation.</synopsis> </specialValue> <specialValue value="0x00000002"> <name>Half-duplex</name> <synopsis>port negotitation half duplex</synopsis> </specialValue> <specialValue value="0x00000003"> <name>Full-duplex</name> <synopsis>port negotitation full duplex</synopsis> </specialValue> </specialValues> </atomic> <!--XXX:This is very IEEE specific--> </dataTypeDef> <dataTypeDef> <name>PortStatsType</name> <synopsis>Port statistics</synopsis> <struct> <component componentID="1"> <name>InUcastPkts</name> <synopsis>Number of unicast packets received</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name>InMulticastPkts</name> <synopsis>Number of multicast packets received</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name>InBroadcastPkts</name> <synopsis>Number of broadcast packets received</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>InOctets</name> <synopsis>number of octets received</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="5"> <name>OutUcastPkts</name> <synopsis>Number of unicast packets transmitted</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="6"> <name>OutMulticastPkts</name> <synopsis>Number of multicast packets transmitted</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="7"> <name>OutBroadcastPkts</name> <synopsis>Number of broadcast packets transmitted</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="8"> <name>OutOcetes</name> <synopsis>Number of octets transmitted</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="9"> <name>InErrorPkts</name> <synopsis>Number of input error packets</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="10"> <name>OutErrorPkts</name> <synopsis>Number of output error packets</synopsis> <typeRef>uint64</typeRef> </component> </struct> <!--XXX:Make sure we validate with SNMP Port Stats--> </dataTypeDef> <dataTypeDef> <name>PortStatusValues</name> <synopsis> The possible values of status. Used for both administrative and operation status</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="0"> <name>Disabled</name> <synopsis>the port is operatively disabled.</synopsis> </specialValue> <specialValue value="1"> <name>UP</name> <synopsis>the port is up.</synopsis> </specialValue> <specialValue value="2"> <name>Down</name> <synopsis>The port is down.</synopsis> </specialValue> </specialValues> <!--XXX:Need to conform with Administrative and operational status--> </atomic> </dataTypeDef> <dataTypeDef> <name>LocalIpAddrType</name> <synopsis>Local IP address belonging to FE.</synopsis> <struct> <component componentID="1"> <name>FEID</name> <synopsis>The FE on which the port ip resides</synopsis> <typeRef>uint32</typeRef> <!--XXX:FEID is know to the Object LFB. Do we need it here?--> </component> <component componentID="2"> <name>IfIndex</name> <synopsis>port index on the specified FE</synopsis> <typeRef>uint32</typeRef> <!--XXX:We need to support the model that says that a local IP has multiple ports. Should this be an array of uint32--> </component> <component componentID="3"> <name>IPaddr</name> <synopsis>IP address of the port</synopsis> <typeRef>IPAddr</typeRef> </component> <component componentID="4"> <name>netmask</name> <synopsis>netmask of this ip address</synopsis> <typeRef>IPAddr</typeRef> </component> <component componentID="5"> <name>BcastAddr</name> <synopsis>The associated Broadcast address of the ip address</synopsis> <typeRef>IPAddr</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>LocalIpv6AddrType</name> <synopsis>The device local IPv6 address infomation</synopsis> <struct> <component componentID="1"> <name>FEID</name> <synopsis>The FE on which the port ip resides</synopsis> <typeRef>uint32</typeRef> <!--XXX:FEID is know to the Object LFB. Do we need it here?--> </component> <component componentID="2"> <name>IfIndex</name> <synopsis>port index on the specified FE</synopsis> <typeRef>uint32</typeRef> <!--XXX:We need to support the model that says that a local IP has multiple ports. Should this be an array of uint32--> </component> <component componentID="3"> <name>IPv6addr</name> <synopsis>IP address of the port</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="4"> <name>prefixlen</name> <synopsis>prefix length of this ip address</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4Addr</name> <synopsis>IPv4 address</synopsis> <typeRef>byte[4]</typeRef> </dataTypeDef> <dataTypeDef> <name>IPv6Addr</name> <synopsis>IPv6 address</synopsis> <typeRef>byte[16]</typeRef> </dataTypeDef> <dataTypeDef> <name>IPv4Prefix</name> <synopsis>IPv4 prefix defined by an address and a prefix length </synopsis> <struct> <component componentID="1"> <name>address</name> <synopsis>Address part</synopsis> <typeRef>IPv4addr</typeRef> </component> <component componentID="2"> <name>prefixlen</name> <synopsis>Prefix length part</synopsis> <atomic> <baseType>uchar</baseType> <rangeRestriction> <allowedRange min="0" max="32"/> </rangeRestriction> </atomic> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4NextHopInfoType</name> <!--XXX:Needs more discussion--> <synopsis>IPv4 nexthop information,include nexthop ip address, output FE and interface etc.</synopsis> <struct> <component componentID="1"> <name>NexthopID</name> <synopsis>nexthop id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>FEID</name> <synopsis>output FE id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="3"> <name>Egress</name> <synopsis>output port index</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="4"> <name>MTU</name> <synopsis>The maximum transmition unit of the nexthop link. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="5"> <name>Flags</name> <synopsis>Associated flags of the nexthop,such as local delivery,multicast etc.</synopsis> <typeRef>NextHopFlagsType</typeRef> </component> <component componentID="6"> <name>NexthopIPaddr</name> <synopsis>IP address of the nexthop</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="7"> <name>L2Index</name> <synopsis>index into the L2 link layer table,such as IPv4 ARP table or IPv6 NBR table.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="8"> <name>EncapNeeded</name> <synopsis>The type of encapsulation needed on the packet. </synopsis> <typeRef>LinkEncapType</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4FibEntryType</name> <!--XXX:Needs more discussion--> <synopsis>IPv4 forwarding table entry.</synopsis> <struct> <component componentID="1"> <name>prefix</name> <synopsis>IPv4 prefix.</synopsis> <typeRef>IPv4Prefix</typeRef> </component> <component componentID="2"> <name>FEID</name> <synopsis>output FE id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="3"> <name>Egress</name> <synopsis>output port index</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="4"> <name>MTU</name> <synopsis>The maximum transmition unit of the nexthop link. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="5"> <name>Flags</name> <synopsis>Associated flags of the nexthop,such as local delivery,multicast etc.</synopsis> <typeRef>NextHopFlagsType</typeRef> </component> <component componentID="6"> <name>NexthopIPaddr</name> <synopsis>IP address of the nexthop</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="7"> <name>L2Index</name> <synopsis>index into the L2 link layer table,such as IPv4 ARP table or IPv6 NBR table.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="8"> <name>EncapNeeded</name> <synopsis>Type of encapsulation needed on the packet</synopsis> <typeRef>LinkEncapType</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4PrefixTableEntry</name> <!--XXX:Needs more discussion--> <synopsis>IPv4 prefix table entry</synopsis> <struct> <component componentID="1"> <name>Prefix</name> <synopsis>IPv4 address prefix</synopsis> <typeRef>IPv4Prefix</typeRef> </component> <component componentID="2"> <name>NexthopID</name> <synopsis>Index into the nexthop table.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4UcastLPMStatisticsType</name> <!--XXX:Needs more discussion--> <synopsis>statistics of IPv4UcastLPM LFB</synopsis> <struct> <component componentID="1"> <name>InRcvdPkts</name> <synopsis>The total number of input packets received from interfaces, including those received in error</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name>FwdPkts</name> <synopsis>IPv4 packet forwarded by this LFB</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name>NoRoutePkts</name> <synopsis>The number of IP datagrams discarded because no route could be found to transmit them to their destination.</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>InDeliverPkts</name> <synopsis>The total number of input datagrams successfully delivered to IP user-protocols (including ICMP).</synopsis> <typeRef>uint64</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4ValidatorStatisticsType</name> <!--XXX:Needs more discussion--> <synopsis>IPv4 validator LFB statistics type</synopsis> <struct> <component componentID="1"> <name>badHeaderPkts</name> <synopsis>The total number of input datagrams with bad ip header</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name>badTotalLengthPkts</name> <synopsis>The total number of input datagrams with bad length </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name>badTTLPkts</name> <synopsis>The total number of input datagrams with bad TTL </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>badChecksum</name> <synopsis>The total number of input datagrams with bad checksum </synopsis> <typeRef>uint64</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv6Prefix</name> <synopsis>IPv6 prefix</synopsis> <struct> <component componentID="1"> <name>IPv6addr</name> <synopsis>address part of the prefix</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="2"> <name>prefixlen</name> <synopsis>length of the prefix</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv6NextHopInfoType</name> <!--XXX:Needs more discussion--> <synopsis>IPv6 nexthop information,including nexthop ip address, output FE and interface etc.</synopsis> <struct> <component componentID="1"> <name>NexthopID</name> <synopsis>nexthop id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>FEID</name> <synopsis>output FE id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="3"> <name>Egress</name> <synopsis>output port index</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="4"> <name>MTU</name> <synopsis>The maximum transmition unit of the nexthop link. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="5"> <name>Flags</name> <synopsis>Associated flags of the nexthop,such as local delivery,multicast etc.</synopsis> <typeRef>NextHopFlagsType</typeRef> </component> <component componentID="6"> <name>NexthopIPv6addr</name> <synopsis>IP address of the nexthop</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="7"> <name>L2Index</name> <synopsis>index into the L2 table</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="8"> <name>EncapNeeded</name> <synopsis>Type of encapsulation needed on the packet</synopsis> <typeRef>LinkEncapType</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv6PrefixTableEntry</name> <!--XXX:Needs more discussion--> <synopsis>IPv6 prefix table entry</synopsis> <struct> <component componentID="1"> <name>Prefix</name> <synopsis>IPv6 address prefix</synopsis> <typeRef>IPv6Prefix</typeRef> </component> <component componentID="2"> <name>NexthopID</name> <synopsis>index to the nexthop table.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv6LPMClassiferStatisticsType</name> <!--XXX:Needs more discussion--> <synopsis>statistics of IPv6LPMClassifier LFB</synopsis> <struct> <component componentID="1"> <name>InRcvdPkts</name> <synopsis>The total number of input packets received from interfaces, including those received in error</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name>FwdPkts</name> <synopsis>IPv4 packet forwarded by this LFB</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name>NoRoutePkts</name> <synopsis>The number of IP datagrams discarded because no route could be found to transmit them to their destination.</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>InDeliverPkts</name> <synopsis>The total number of input datagrams successfully delivered to IP user-protocols (including ICMP).</synopsis> <typeRef>uint64</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv6ValidatorStatisticsType</name> <!--XXX:Needs more discussion--> <synopsis>IPv6 validator LFB statistics type</synopsis> <struct> <component componentID="1"> <name>badHeaderPkts</name> <synopsis>The total number of input datagrams with bad ip header</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name>badTotalLengthPkts</name> <synopsis>The total number of input datagrams with bad length </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name>badTTLPkts</name> <synopsis>The total number of input datagrams with bad TTL </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>badChecksum</name> <synopsis>The total number of input datagrams with bad checksum </synopsis> <typeRef>uint64</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>NextHopFlagsType</name> <!--XXX:Needs more discussion--> <synopsis>Flags to define different nexthop behaviors</synopsis> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x00000001"> <name>local</name> <synopsis>Packets match the nexthop entry with this flag are delivered to the higher level protocols.</synopsis> </specialValue> <specialValue value="0x00000002"> <name>drop</name> <synopsis>Packets match the nexthop entry with this flag are to be dropped.</synopsis> </specialValue> <specialValue value="0x00000004"> <name>broadcast</name> <synopsis>The route associated with this nexthop is a broadcast.</synopsis> </specialValue> <specialValue value="0x00000008"> <name>multicast</name> <synopsis>The route associated with this nexthop is multicast </synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>WeightTableEntryType</name> <!--XXX:Needs more discussion--> <synopsis>Weight table for queues.</synopsis> <struct> <component componentID="1"> <name>QueueID</name> <synopsis>queue id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>weight</name> <synopsis>weight of the queue.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>NbrState</name> <!--XXX:Needs more discussion--> <synopsis>IPv6 neighbour entry resolution state.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="0x01"> <name>INCOMPLETE</name> <synopsis>Address resolution is being performed on the entry. Specifically, a Neighbor Solicitation has been sent to the solicited-node multicast address of the target, but the corresponding Neighbor Advertisement has not yet been received.</synopsis> </specialValue> <specialValue value="0x02"> <name>REACHABLE</name> <synopsis>Positive confirmation was received within the last ReachableTime milliseconds that the forward path to the neighbor was functioning properly. While REACHABLE, no special action takes place as packets are sent.</synopsis> </specialValue> <specialValue value="0x03"> <name>STALE</name> <synopsis>More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. While stale, no action takes place until a packet is sent. The STALE state is entered upon receiving an unsolicited Neighbor Discovery message that updates the cached link-layer address. Receipt of such a message does not confirm reachability, and entering the STALE state insures reachability is verified quickly if the entry is actually being used. However, reachability is not actually verified until the entry is actually used.</synopsis> </specialValue> <specialValue value="0x04"> <name>DELAY</name> <synopsis>More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly, and a packet was sent within the last DELAY_FIRST_PROBE_TIME seconds. If no reachability confirmation is received within DELAY_FIRST_PROBE_TIME seconds of entering the DELAY state, send a Neighbor Solicitation and change the state to PROBE.</synopsis> </specialValue> <specialValue value="0x05"> <name>PROBE</name> <synopsis>A reachability confirmation is actively sought by retransmitting Neighbor Solicitations every RetransTimer milliseconds until a reachability confirmation is received.</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>ArpTableEntryType</name> <!--XXX:Needs more discussion--> <synopsis>Arp entry.</synopsis> <struct> <component componentID="1"> <name>Index</name> <synopsis>Index of the arp table.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>NeighborIP</name> <synopsis>IP address of the neighbour.</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="3"> <name>SrcMac</name> <synopsis>Source MAC.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="4"> <name>NeighborMac</name> <synopsis>Mac of the Neighbor.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="5"> <name>State</name> <synopsis>State of the address resolution progress.</synopsis> <typeRef>ArpStateType</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>NbrTableEntryType</name> <!--XXX:Needs more discussion--> <synopsis>IPv6 neighbour table entry.</synopsis> <struct> <component componentID="1"> <name>Index</name> <synopsis>Index of the arp table.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>NeighborIPv6</name> <synopsis>IP address of the neighbour.</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="3"> <name>SrcMac</name> <synopsis>Source MAC.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="4"> <name>NeighborMac</name> <synopsis>Mac of the Neighbor.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="5"> <name>State</name> <synopsis>State of the entry's resolution progress.</synopsis> <typeRef>NbrState</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>DCHostTableEntryTypev4</name> <!--XXX:Needs more discussion--> <synopsis>Direct connected arp table entry for IPv4.</synopsis> <struct> <component componentID="1"> <name>NeighbourIP</name> <synopsis>IP address of the neighbour.</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="2"> <name>SrcMac</name> <synopsis>Source MAC.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="3"> <name>NeighborMac</name> <synopsis>Mac of the Neighbor.</synopsis> <typeRef>IEEEMAC</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>DCHostTableEntryTypev6</name> <!--XXX:Needs more discussion--> <synopsis>Direct connected arp table entry for IPv6.</synopsis> <struct> <component componentID="1"> <name>NeighbourIPv6</name> <synopsis>IP address of the neighbour.</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="2"> <name>SrcMac</name> <synopsis>Source MAC.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="3"> <name>NeighborMac</name> <synopsis>Mac of the Neighbor.</synopsis> <typeRef>IEEEMAC</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPPacketType</name> <!--XXX:Needs more discussion--> <synopsis>The packet type code.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="1"> <name>IPv4Ucast</name> <synopsis>IPv4 unicast packet.</synopsis> </specialValue> <specialValue value="2"> <name>IPv4Mcast</name> <synopsis>IPv4 multicast packet.</synopsis> </specialValue> <specialValue value="3"> <name>IPv6Ucast</name> <synopsis>IPv6 unicast packet.</synopsis> </specialValue> <specialValue value="4"> <name>IPv6Mcast</name> <synopsis>IPv6 multicast packet.</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>IPDispatchTableType</name> <!--XXX:Needs more discussion--> <synopsis>The dispatch table type.</synopsis> <struct> <component componentID="1"> <name>IPPacketType</name> <synopsis>The type of the packet.IPv4Uncast,IPv6Ucast, IPv4Mulcast,IPv6Mulcast etc.</synopsis> <typeRef>IPPacketType</typeRef> </component> <component componentID="2"> <name>index</name> <synopsis>The index of the output group to output the packets </synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>MetaType</name> <synopsis>Metadata type definition.</synopsis> <struct> <component componentID="1"> <name>MetadataID</name> <synopsis>The ID of the metadata,the value is standardalized in the corresponding LFB definition RFCs.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>MetadataName</name> <synopsis>The name of the metadata.</synopsis> <typeRef>String</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>MetadataClassTableType</name> <!--XXX:Needs more discussion--> <synopsis>The meta data classifying table.</synopsis> <struct> <component componentID="1"> <name>value</name> <synopsis>Value of the meta data.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>index</name> <synopsis>The index of the port in the output group to use for outputing the packets.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>LinkEncapType</name> <!--XXX:Needs more discussion--> <synopsis>Encapsulation type.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="1"> <name>Link</name> <synopsis>Link layer encapsulation such as Ethernet and PPP. </synopsis> </specialValue> <specialValue value="2"> <name>InterFE</name> <synopsis>Inter FE communication encapsulation.</synopsis> </specialValue> <specialValue value="3"> <name>Tunnel</name> <synopsis>Tunnel encapsulation such as IP-in-IP.</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>IPAddress</name> <!--XXX:Do we need a union of IPAddressess?--> <synopsis>IP layer address.</synopsis> <union> <component componentID="1"> <name>Ipv4</name> <synopsis>IPv4 address.</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="2"> <name>Ipv6</name> <synopsis>IPv6 address.</synopsis> <typeRef>IPv6Addr</typeRef> </component> </union> </dataTypeDef> <dataTypeDef> <name>ArpStateType</name> <!--XXX:Needs more discussion--> <synopsis>The arp entry state.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="1"> <name>Manual</name> <synopsis>The entry is manually set.</synopsis> </specialValue> <specialValue value="2"> <name>InSolicit</name> <synopsis>The peer's level 2 address is still in requesting. </synopsis> </specialValue> <specialValue value="4"> <name>Valid</name> <synopsis>The address resolution have been completed successfully.Now it can be used in the data packets forwarding </synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>MatchTargetType</name> <!--XXX:Needs more discussion--> <synopsis> Indicator for the kind of field to be matched by this entry in a classifier.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="0"> <name>MatchNone</name> <synopsis>A matcher against no field</synopsis> </specialValue> <specialValue value="1"> <name>MatchMetaData</name> <synopsis>A matcher against a metadata item</synopsis> </specialValue> <specialValue value="2"> <name>MatchPacketField</name> <synopsis>A matcher that works against an identified packet field.</synopsis> </specialValue> <specialValue value="3"> <name>MatchOffsetLength</name> <synopsis> The match target is a specified portion of the packet. </synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>MatchTargetIdentifier</name> <!--XXX:Needs more discussion--> <synopsis> Identify the specific target of a match condition. </synopsis> <union> <component componentID="1"> <name>MetaDataID</name> <synopsis>The ID of a metadata item</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>packetFieldID</name> <synopsis> The identifier for a packet Field, such as SA, DA, Protocol, SPort, DPort, etc. These identifiers allow references to fields with varialbe amounts before them. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="3"> <name>OffSetLengthPacketField</name> <synopsis> A field in the packet identified by its offset and length in bits. This does not allow for matching fields whose position depends upon earlier field sizes. </synopsis> <struct> <component componentID="1"> <name>fieldOffset</name> <synopsis>The offset in bits from the start of the packet to the start of the field.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>fieldLength</name> <synopsis>The length of the field, in bits</synopsis> <typeRef>uint32</typeRef> </component> </struct> </component> </union> </dataTypeDef> <dataTypeDef> <name>MatchBitString</name> <!--XXX:Needs more discussion--> <synopsis>A bit string for use in a match condition.</synopsis> <struct> <component componentID="1"> <name>MatchBits</name> <synopsis>The bits to match</synopsis> <typeRef>octetstring[16]</typeRef> </component> <component componentID="2"> <name>MatchLength</name> <synopsis>The number of bits to match</synopsis> <typeRef>uchar</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <!--XXX:Needs more discussion--> <name>MatchCondition</name> <synopsis>Structure for a single condition to be applied</synopsis> <struct> <component componentID="1"> <name>TargetType</name> <synopsis>The category of target to match</synopsis> <typeRef>MatchTargetType</typeRef> </component> <component componentID="2"> <name>TargetID</name> <synopsis>The specific target to compare</synopsis> <typeRef>MatchTargetIdentifier</typeRef> </component> <component componentID="3"> <name>MatchType</name> <synopsis>The kind of match to apply.</synopsis> <typeRef>MatchConditionType</typeRef> </component> <component componentID="4"> <name>MatchParamOne</name> <synopsis>The first parameter for the match</synopsis> <optional/> <typeRef>MatchBitString</typeRef> </component> <component componentID="5"> <name>MatchParamTwo</name> <synopsis>The second parameter for the match</synopsis> <optional/> <typeRef>MatchBitString</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>MatchConditiontType</name> <!--XXX:Needs more discussion--> <synopsis> Indicator for the kind of match condition to be applied. </synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="0"> <name>MatchNone</name> <synopsis>A matcher which always fails</synopsis> </specialValue> <specialValue value="1"> <name>MatchExact</name> <synopsis> The target and the match value must be the same, with no padding. Only the first value of the match condition is used. The first match value must be occur. </synopsis> </specialValue> <specialValue value="2"> <name>MatchLeft</name> <synopsis> The target must begin with the first match value. If there is a second match value, the remainder of the target must match repeated occurrances of the second value. Thus, this can be used to allow any terminal content, or specific ending pad. The first match value must occur.</synopsis> </specialValue> <specialValue value="3"> <name>MatchRight</name> <synopsis> The target must end with the first match value. If there is a second match value, the preceding part of the target must match repeated occurrances of the second value. Thus, this can be used to allow any leading content, or specific leading fill. The first match value must occur.</synopsis> </specialValue> <specialValue value="4"> <name>MatchRange</name> <synopsis> The match values will be considered as numbers, and the target must be greater than or equal to the first match value, and less than or equal to the second match value. An omitted match value means that end of the range is unlimitted.</synopsis> </specialValue> <specialValue value="5"> <name>MatchMaskedValue</name> <synopsis> The target the the first value are each anded with the second value. The match succeeds if the results of these and operations are identical. Both values are required. </synopsis> </specialValue> <specialValue value="6"> <name>MatchSucceed</name> <synopsis>A Match which always succeeds</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <!--XXX:Needs more discussion--> <name>MatchMetaDataAction</name> <synopsis> An action to set a metadata item to either a specific value or a field from the incoming meta data or packet.</synopsis> <struct> <component componentID="1"> <name>MetaDataToSet</name> <synopsis>The Meta Data Item to set</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>ExplicitValueToSet</name> <synopsis>A value to set the metadata to</synopsis> <optional/> <typeRef>octetstring[16]</typeRef> </component> <component componentID="3"> <name>ValueFromCondition</name> <synopsis> This is an index into the corresponding match conditions, and the meta data will be set to the value that was tested by that condition.</synopsis> <optional/> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>NextHopIndex</name> <synopsis> An index used by the next hop table. Typically stored in and generated as metadata by the longest-prefix-match LFB.</synopsis> <typeRef>int32</typeRef> </dataTypeDef> </dataTypeDefs>
TOC |
The following MetaData Types are defined:
<metadataDefs> <metadataDef> <name>NextHopID</name> <synopsis>An index into a Next Hop entry in Nexthop table</synopsis> <metadataID>1</metadataID> <typeRef>NextHopIndex</typeRef> </metadataDef> <metadataDef> <name>ExceptionID</name> <!--XXX:Needs more discussion. See that it applies to all LFBs.--> <synopsis>Exception Types</synopsis> <metadataID>2</metadataID> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x00000001"> <name>Options</name> <synopsis>Packets with options,for IPv6 Packet with next-header set to hop-by-hop header(0).</synopsis> </specialValue> <specialValue value="0x00000002"> <name>LengthMismatch</name> <synopsis>The packet length reported by link layer is less than the total length field.</synopsis> </specialValue> <specialValue value="0x00000003"> <name>BadTTL</name> <synopsis>The packet can't be forwarded as the TTL has expired.</synopsis> </specialValue> <specialValue value="0x00000004"> <name>Multicast</name> <synopsis>Packet received is a multicast packet.</synopsis> </specialValue> <specialValue value="0x00000005"> <name>FragRequired</name> <synopsis>The MTU for outgoing interface is less than the packet size.</synopsis> </specialValue> <specialValue value="0x00000006"> <name>Redirect</name> <synopsis>The outgoing port is same as the one on which the packet is received.</synopsis> </specialValue> <specialValue value="0x00000007"> <name>LocalDelivery</name> <synopsis>The packet is for a local interface.</synopsis> </specialValue> <specialValue value="0x00000008"> <name>LimitedBroadcast</name> <synopsis>The packet received as limited broadcast</synopsis> </specialValue> </specialValues> </atomic> </metadataDef> <metadataDef> <name>IngressPort</name> <synopsis>At which interface the packet arrive.</synopsis> <metadataID>3</metadataID> <typeRef>ifIndex</typeRef> </metadataDef> <metadataDef> <name>EgressPort</name> <synopsis>The interface out which the packet will emmit.</synopsis> <metadataID>4</metadataID> <typeRef>ifIndex</typeRef> </metadataDef> <metadataDef> <name>NextHopIP</name> <!--XXX:Needs more discussion if this is metadata--> <synopsis>Nexthop IPv4 address</synopsis> <metadataID>5</metadataID> <typeRef>IP4Addr</typeRef> </metadataDef> <metadataDef> <name>NexthopIPv6</name> <!--XXX:Needs more discussion if this is metadata--> <synopsis>Nexthop IPv6 address</synopsis> <metadataID>6</metadataID> <typeRef>IPv6Addr</typeRef> </metadataDef> <metadataDef> <name>PacketLength</name> <synopsis>The length of the packet in octets.</synopsis> <metadataID>7</metadataID> <typeRef>uint32</typeRef> </metadataDef> <metadataDef> <name>IPPacketType</name> <!--XXX: Needs more discussion. Should match frameDefs.--> <synopsis>Type of the packet</synopsis> <metadataID>8</metadataID> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x8000"> <name>IPv4</name> <synopsis>IPv4 packet</synopsis> </specialValue> <specialValue value="0x86DD"> <name>IPv6</name> <synopsis>IPv6 packet</synopsis> </specialValue> <specialValue value="3"> <name>TaggedFrame</name> <synopsis>packet with metadata</synopsis> </specialValue> <specialValue value="4"> <name>MetaDataFrame</name> <synopsis>meta data only</synopsis> </specialValue> </specialValues> </atomic> </metadataDef> <metadataDef> <name>QueueID</name> <!--XXX:Needs more discussion--> <synopsis>The queue ID</synopsis> <metadataID>9</metadataID> <typeRef>uint32</typeRef> </metadataDef> <metadataDef> <name>QueueOperationCmd</name> <!--XXX:Needs more discussion--> <synopsis>The type of operation on the queue,there are two types defined here: enqueue and dequeue.</synopsis> <metadataID>10</metadataID> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="1"> <name>Enqueue</name> <synopsis>Enqueue command.</synopsis> </specialValue> <specialValue value="2"> <name>Dequeue</name> <synopsis>Dequeue command.</synopsis> </specialValue> </specialValues> </atomic> </metadataDef> <metadataDef> <name>SrcFEID</name> <synopsis>Source FE ID.</synopsis> <metadataID>11</metadataID> <typeRef>uint32</typeRef> </metadataDef> <metadataDef> <name>DstFEID</name> <synopsis>Destination FE ID.</synopsis> <metadataID>12</metadataID> <typeRef>uint32</typeRef> </metadataDef> <metadataDef> <name>NexthopIndex</name> <!--XXX:This should be removed--> <synopsis>Nexthop index into the link layer address resolution table.</synopsis> <metadataID>13</metadataID> <typeRef>uint</typeRef> </metadataDef> <metadataDef> <name>NHEncapMethod</name> <!--XXX: Is there any value in this?--> <synopsis>how should the following LFBs do to encapsulate the packets,such as link encapsulation which means the packets need to encapsulate link layer header before sending to media;inter FE communication encapsulation which means the packets need to first encapsulate inter FE communication header before transimiting to other FEs;tunnel encapsulation which means the packet need do extra tunnel encapsulation before sending out to media.</synopsis> <metadataID>14</metadataID> <typeRef>LinkEncapType</typeRef> </metadataDef> <metadataDef> <name>ErrorId</name> <!--XXX:Needs more discussion--> <synopsis>Error Type.</synopsis> <metadataID>15</metadataID> <atomic> <baseType>int32</baseType> <specialValues> <specialValue value="0x00030001"> <name>WrongIpVersion</name> <synopsis>the IP version wrong</synopsis> </specialValue> <specialValue value="0x00030002"> <name>WrongLength</name> <synopsis> the packet length is not as long as the header indicates</synopsis> </specialValue> <specialValue value="0x000300FF"> <name>otherError</name> <synopsis>The errors we not defined now</synopsis> </specialValue> </specialValues> </atomic> </metadataDef> </metadataDefs>
TOC |
As specified in section 3.1.2 the LFBs have been grouped together for better understanding. The following groups have been created
TOC |
Currently there are only two core LFBs defined. These two LFBs are core LFBs for ForCES. It's required that each FE must implement these two LFBs for CE to control it.
TOC |
The FEObject LFB is described in detail in the FE-MODEL (Halpern, J. and J. Salim, “ForCES Forwarding Element Model,” October 2008.) [I‑D.ietf‑forces‑model]. The reader is refered there for further detail.
TOC |
The FEProtocol LFB is described in detail in the FE-protocol (Dong, L., Doria, A., Gopal, R., HAAS, R., Salim, J., Khosravi, H., and W. Wang, “ForCES Protocol Specification,” March 2009.) [I‑D.ietf‑forces‑protocol]. The reader is refered there for further detail.
TOC |
The Port LFBs that are defined in this library are:
TOC |
This LFB Class provides a generic basis for representing connectivity between the FE and the outside world. The LFB has one or more ports for packets that the FE processing logic is forwrding for transmission by this Connectivity LFB. It has one or more ports for packets that the Connectivity LFB has received and is handing to the FE processing logic. Multiple ports for handline packets are supported so that protocol specific encapsulation and demultiplexing can be provided by this LFB. This LFB also has ports for sending packets to lower layer Connectivity LFBs and receiving packets from such lower layer Connectivity LFBs. This enables support for the processing components of interface stacks, such as PPP over Ethernet or Ethernet over MPLS. For packets arriving from Media or lower layer connectivity, this LFB will perform appropriate media validation, then remove media specific headers, and place the relevant information in meta-data. For ethernet, the Source MAC would be in meta-data. For Frame Relay or ATM, a circuit identifier would be in meta-data. For Ethernet with VLANs, this meta-data would indicate which VLAN the packet came from. For packets to be transmitted, meta-data indicating the destination (destination MAC or outgoing circuit, etc.) is required. This LFB will also include statistical components such as the number of octets and packets sent and received, the number of various input and output errors, etc.
TOC |
LFB for Ethernet ports
TOC |
An LFB class for definition of Ethernet decapsulation and Ethernet filtering functions.
TOC |
An LFB classifier definition for completes ethernet encapsulation fuctions.
TOC |
The Address LFBs that are defined in this library are:
TOC |
This LFB class provides the function of IPv6 address resolution part of neighbor discovery protocol.It provides an offload of ND protocol processing to FE.It process the following ND messages:neighbour solicitation and neighbour advertisement.
TOC |
This LFB class provides the function of address resolution for IPv4 nodes.
TOC |
This LFB class provide some basic ICMP function,it only generate the following ICMP messages:ICMP destination unreachable and time excceeded.
TOC |
This LFB class provide some basic ICMPv6 function,it only generate the following ICMP messages for the packets that need some basic icmp processing:destination not reachable and time excceeded.
TOC |
An LFB Class definition for validates the IPv4 packet.
This LFB validates the IP version and header length fields, including verifying that the packet length is at least as long as the header indicates.
TOC |
An LFB Class definition for validates the IPv6 packet.
This LFB validates the IP version and header length fields, including verifying that the packet length is at least as long as the header indicates.
TOC |
The Forwarding LFBs that are defined in this library are:
TOC |
IPv4 Longest Prefix Match Lookup LFB
TOC |
An LFB definition for applicating next hop action to IPv4 packets,the actions include:TTL operation,checksum recalculation.
TOC |
An LFB class definition for IPv6 longest prefix lookup function.
TOC |
An LFB for applicating next hop action to IPv6 packets,actions mainly inlcude TTL incrementation and checksum recalculation.
TOC |
To build an actual forwarder, one must include some limited for of queueing and scheduling. Queues are entities which store packets. Schedulers are entities which react to the state of queues and cause packets to be emitted from queues.
The actual interaction between queues and schedulers (and their real world degree of separation) is quite complex. A very complex LFB model would be required to represent all the complexity. Additionally, there is the issue of representing the relationship between the queue and the scheduler. A simple approach has been taken in these class definitions.
A queue element consists of an input port (called InData) on which it receives data packets, and output port (called OutData) on which it will send packets when permitted by its definition or the scheduler. Its relationship to scheduluers is represented by a set of output ports (the group OutCountrol) and an input port (called InControl). These ports are defined to carry packets consisting only of meta- data. In fact, these ports are an abstraction, and what one might call a legal fiction. An element of the OutControl group represents the fact that a scheduler is aware of the state of that queue element. The InControl port represents the fact that one or more schedulers connected to that port are controlling that queue. There is no meta-data defined for actual exchange on these ports, as their real world realization is highly implementation dependent. To complete this picture, a schedule has a group of input ports (Watchers) representing the connectivity to queues it is aware of, and a group of output ports (Controllers) representing control over queues. This allows for the simple case of a controller who monitors and controls a single set of queues, and more interesting cases where the control of certain queues may depend upon the state of queues whihc are not under the control of the scheduler.
The Queues and schedulers LFBs that are defined in this library are:
TOC |
This defines a base LFB class for schedulers. Schedulers have an Input Port group called Watchers for representing the queues they watch, and an Output Port group called Controllers fro representing the queues they control.
TOC |
Queues have a packet input, a packet output, a control input, and a group of control outputs. The control ports represent the control relationships with scheduluers.
TOC |
Weighted round robin scheduler.
TOC |
The Miscellanious LFBs that are defined in this library are:
TOC |
This LFB class process the IPv6 packet with extended header,For the moment,the packets to this LFB are redirect to RedirectSink LFB by default.
TOC |
This LFB class provides the function of classify packets according to the meta data.Now it only works on one meta data.
TOC |
This LFB class process the IPv4 packet with options,it can process on the following options:Router-alert option.
TOC |
An LFB Class definition for exchanging data packets between the FE and the CE.
This LFB represents a point of exchagne of data packets between the CE and the FE. Packets with meta-data are exchanged. It is expected that the output port of a RedirectLFB, if it is connected at all, will be connected to a meta-data redirector.
TOC |
LFB removes data from the front of a packet.
TOC |
An LFB Class definition for packet duplicator LFB. Any packet received on an input port is logically copied and sent to all output ports.
TOC |
This is a class definition for an Arbitrary Classifier LFB. The input is a port group, and the match conditions can include the port in their test. This allows the topology to carry some information if desired. The match conditions can select an output from the SuccessOuput output port group. If no condition matches, the packet will be sesnt to the FailOutput port.
TOC |
<?xml version="1.0" encoding="UTF-8"?> <LFBLibrary provides="Library" xmlns="urn:ietf:params:xml:ns:forces: lfbmodel:1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:ietf:params:xml:ns:forces:lfbmodel:1.0 SchemaFile.xsd"> <frameDefs> <frameDef> <name>EthernetII</name> <synopsis>an Ethernet II frame type</synopsis> </frameDef> <frameDef> <name>Ethernet802.3</name> <synopsis>An Ethernet 802.3 frame type</synopsis> </frameDef> <frameDef> <name>Ethernet802.2</name> <synopsis>An Ethernet 802.2 frame type</synopsis> </frameDef> <frameDef> <name>Ethernet802.2SNAP</name> <synopsis>An Ethernet 802.2 with SNAP frame</synopsis> </frameDef> <frameDef> <name>IPv4Frame</name> <synopsis>An IPv4 packet</synopsis> </frameDef> <frameDef> <name>IPv6Frame</name> <synopsis>An IPv6 packet</synopsis> </frameDef> <frameDef> <name>taggedFrame</name> <synopsis>A frame of any type with associated metadata</synopsis> </frameDef> <frameDef> <name>MetadataFrame</name> <synopsis>Frame only contains meta data</synopsis> </frameDef> <frameDef> <name>Arbitrary</name> <synopsis>Any kind of frame except Metadata Frame.</synopsis> </frameDef> </frameDefs> <dataTypeDefs> <dataTypeDef> <name>ifIndex</name> <synopsis>A Port Identifier</synopsis> <typeRef>uint32</typeRef> </dataTypeDef> <dataTypeDef> <name>IEEEMAC</name> <synopsis>IEEE MAC Address</synopsis> <typeRef>byte[6]</typeRef> </dataTypeDef> <dataTypeDef> <name>NetSpeedType</name> <synopsis>Network speed values</synopsis> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x00000001"> <name>LAN_SPEED_10M</name> <synopsis>10M Ethernet</synopsis> </specialValue> <specialValue value="0x00000002"> <name>LAN_SPEED_100M</name> <synopsis>100M Ethernet</synopsis> </specialValue> <specialValue value="0x00000003"> <name>LAN_SPEED_1G</name> <synopsis>1000M Ethernet</synopsis> </specialValue> <specialValue value="0x00000004"> <name>LAN_SPEED_10G</name> <synopsis>10G Ethernet</synopsis> </specialValue> <specialValue value="0x00000005"> <name>LAN_SPEED_AUTO</name> <synopsis>LAN speed auto</synopsis> </specialValue> </specialValues> <!-- XXX: This doesnt look like the SNMP definitions. We should look at the SNMP definitions for guidance; we should not have limitations that SNMP has such as being restricted to 32 bits" "refer to RFC 3635 ifSpeed and ifHighSpeed" --> </atomic> </dataTypeDef> <dataTypeDef> <name>IEEENegotiationType</name> <synopsis>IEEENegotiation types</synopsis> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x00000001"> <name>Auto</name> <synopsis>Auto negotitation.</synopsis> </specialValue> <specialValue value="0x00000002"> <name>Half-duplex</name> <synopsis>port negotitation half duplex</synopsis> </specialValue> <specialValue value="0x00000003"> <name>Full-duplex</name> <synopsis>port negotitation full duplex</synopsis> </specialValue> </specialValues> </atomic> <!-- XXX: This is very IEEE specific --> </dataTypeDef> <dataTypeDef> <name>PortStatsType</name> <synopsis>Port statistics</synopsis> <struct> <component componentID="1"> <name>InUcastPkts</name> <synopsis>Number of unicast packets received</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name>InMulticastPkts</name> <synopsis>Number of multicast packets received</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name>InBroadcastPkts</name> <synopsis>Number of broadcast packets received</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>InOctets</name> <synopsis>number of octets received</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="5"> <name>OutUcastPkts</name> <synopsis>Number of unicast packets transmitted</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="6"> <name>OutMulticastPkts</name> <synopsis>Number of multicast packets transmitted</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="7"> <name>OutBroadcastPkts</name> <synopsis>Number of broadcast packets transmitted</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="8"> <name>OutOcetes</name> <synopsis>Number of octets transmitted</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="9"> <name>InErrorPkts</name> <synopsis>Number of input error packets</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="10"> <name>OutErrorPkts</name> <synopsis>Number of output error packets</synopsis> <typeRef>uint64</typeRef> </component> </struct> <!-- XXX: Make sure we validate with SNMP Port Stats --> </dataTypeDef> <dataTypeDef> <name>PortStatusValues</name> <synopsis> The possible values of status. Used for both administrative and operation status </synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="0"> <name>Disabled </name> <synopsis>the port is operatively disabled.</synopsis> </specialValue> <specialValue value="1"> <name>UP</name> <synopsis>the port is up.</synopsis> </specialValue> <specialValue value="2"> <name>Down</name> <synopsis>The port is down.</synopsis> </specialValue> </specialValues> <!--XXX:Need to conform with Administrative and operational status--> </atomic> </dataTypeDef> <dataTypeDef> <name>LocalIpAddrType</name> <synopsis>Local IP address belonging to FE.</synopsis> <struct> <component componentID="1"> <name>FEID</name> <synopsis>The FE on which the port ip resides</synopsis> <typeRef>uint32</typeRef> <!-- XXX: FEID is know to the Object LFB. Do we need it here? --> </component> <component componentID="2"> <name>IfIndex</name> <synopsis>port index on the specified FE</synopsis> <typeRef>uint32</typeRef> <!-- XXX: We need to support the model that says that a local IP has multiple ports. Should this be an array of uint32 --> </component> <component componentID="3"> <name>IPaddr</name> <synopsis>IP address of the port</synopsis> <typeRef>IPAddr</typeRef> </component> <component componentID="4"> <name>netmask</name> <synopsis>netmask of this ip address</synopsis> <typeRef>IPAddr</typeRef> </component> <component componentID="5"> <name>BcastAddr</name> <synopsis>The associated Broadcast address of the ip address </synopsis> <typeRef>IPAddr</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>LocalIpv6AddrType</name> <synopsis>The device local IPv6 address infomation</synopsis> <struct> <component componentID="1"> <name>FEID</name> <synopsis>The FE on which the port ip resides</synopsis> <typeRef>uint32</typeRef> <!-- XXX: FEID is know to the Object LFB. Do we need it here? --> </component> <component componentID="2"> <name>IfIndex</name> <synopsis>port index on the specified FE</synopsis> <typeRef>uint32</typeRef> <!-- XXX: We need to support the model that says that a local IP has multiple ports. Should this be an array of uint32 --> </component> <component componentID="3"> <name>IPv6addr</name> <synopsis>IP address of the port</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="4"> <name>prefixlen</name> <synopsis>prefix length of this ip address</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4Addr</name> <synopsis>IPv4 address</synopsis> <typeRef>byte[4]</typeRef> </dataTypeDef> <dataTypeDef> <name>IPv6Addr</name> <synopsis>IPv6 address</synopsis> <typeRef>byte[16]</typeRef> </dataTypeDef> <dataTypeDef> <name>IPv4Prefix</name> <synopsis>IPv4 prefix defined by an address and a prefix length </synopsis> <struct> <component componentID="1"> <name>address</name> <synopsis>Address part</synopsis> <typeRef>IPv4addr</typeRef> </component> <component componentID="2"> <name>prefixlen</name> <synopsis>Prefix length part</synopsis> <atomic> <baseType>uchar</baseType> <rangeRestriction> <allowedRange min="0" max="32"/> </rangeRestriction> </atomic> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4NextHopInfoType </name> <!-- XXX: Needs more discussion --> <synopsis>IPv4 nexthop information,include nexthop ip address, output FE and interface etc.</synopsis> <struct> <component componentID="1"> <name>NexthopID</name> <synopsis>nexthop id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>FEID</name> <synopsis>output FE id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="3"> <name>Egress</name> <synopsis>output port index</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="4"> <name>MTU</name> <synopsis>The maximum transmition unit of the nexthop link. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="5"> <name> Flags </name> <synopsis>Associated flags of the nexthop,such as local delivery,multicast etc.</synopsis> <typeRef>NextHopFlagsType</typeRef> </component> <component componentID="6"> <name> NexthopIPaddr </name> <synopsis>IP address of the nexthop</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="7"> <name> L2Index </name> <synopsis>index into the L2 link layer table,such as IPv4 ARP table or IPv6 NBR table.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="8"> <name> EncapNeeded </name> <synopsis>The type of encapsulation needed on the packet. </synopsis> <typeRef>LinkEncapType</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4FibEntryType</name> <!-- XXX: Needs more discussion --> <synopsis>IPv4 forwarding table entry.</synopsis> <struct> <component componentID="1"> <name>prefix</name> <synopsis>IPv4 prefix.</synopsis> <typeRef>IPv4Prefix</typeRef> </component> <component componentID="2"> <name>FEID</name> <synopsis>output FE id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="3"> <name>Egress</name> <synopsis>output port index</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="4"> <name>MTU</name> <synopsis>The maximum transmition unit of the nexthop link. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="5"> <name> Flags </name> <synopsis>Associated flags of the nexthop,such as local delivery,multicast etc.</synopsis> <typeRef>NextHopFlagsType</typeRef> </component> <component componentID="6"> <name> NexthopIPaddr </name> <synopsis>IP address of the nexthop</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="7"> <name> L2Index </name> <synopsis>index into the L2 link layer table,such as IPv4 ARP table or IPv6 NBR table.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="8"> <name> EncapNeeded </name> <synopsis>The type of encapsulation needed on the packet. </synopsis> <typeRef>LinkEncapType</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4PrefixTableEntry</name> <!-- XXX: Needs more discussion --> <synopsis>IPv4 prefix table entry</synopsis> <struct> <component componentID="1"> <name>Prefix</name> <synopsis>IPv4 address prefix</synopsis> <typeRef> IPv4Prefix </typeRef> </component> <component componentID="2"> <name>NexthopID</name> <synopsis>Index into the nexthop table.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4UcastLPMStatisticsType </name> <!-- XXX: Needs more discussion --> <synopsis>statistics of IPv4UcastLPM LFB</synopsis> <struct> <component componentID="1"> <name>InRcvdPkts</name> <synopsis>The total number of input packets received from interfaces, including those received in error</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name>FwdPkts</name> <synopsis>IPv4 packet forwarded by this LFB</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name> NoRoutePkts </name> <synopsis>The number of IP datagrams discarded because no route could be found to transmit them to their destination. </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>InDeliverPkts</name> <synopsis>The total number of input datagrams successfully delivered to IP user-protocols (including ICMP).</synopsis> <typeRef>uint64</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv4ValidatorStatisticsType</name> <!-- XXX: Needs more discussion --> <synopsis>IPv4 validator LFB statistics type</synopsis> <struct> <component componentID="1"> <name>badHeaderPkts</name> <synopsis>The total number of input datagrams with bad ip header</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name>badTotalLengthPkts</name> <synopsis>The total number of input datagrams with bad length </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name>badTTLPkts</name> <synopsis>The total number of input datagrams with bad TTL </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>badChecksum</name> <synopsis>The total number of input datagrams with bad checksum</synopsis> <typeRef>uint64</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv6Prefix</name> <synopsis>IPv6 prefix</synopsis> <struct> <component componentID="1"> <name>IPv6addr</name> <synopsis>address part of the prefix</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="2"> <name>prefixlen</name> <synopsis>length of the prefix</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv6NextHopInfoType</name> <!-- XXX: Needs more discussion --> <synopsis>IPv6 nexthop information,include nexthop ip address, output FE and interface etc.</synopsis> <struct> <component componentID="1"> <name>NexthopID</name> <synopsis>nexthop id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>FEID</name> <synopsis>output FE id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="3"> <name>Egress</name> <synopsis>output port index</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="4"> <name>MTU</name> <synopsis>The maximum transmition unit of the nexthop link. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="5"> <name> Flags </name> <synopsis>Associated flags of the nexthop,such as local delivery,multicast etc.</synopsis> <typeRef>NextHopFlagsType</typeRef> </component> <component componentID="6"> <name> NexthopIPv6addr </name> <synopsis>IP address of the nexthop</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="7"> <name> L2Index </name> <synopsis>index into the L2 table</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="8"> <name> EncapNeeded </name> <synopsis>The type of encapsulation needed on the packet. </synopsis> <typeRef>LinkEncapType</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPv6PrefixTableEntry</name> <!-- XXX: Needs more discussion --> <synopsis>IPv6 prefix table entry</synopsis> <struct> <component componentID="1"> <name> Prefix </name> <synopsis>IPv6 address prefix</synopsis> <typeRef> IPv6Prefix </typeRef> </component> <component componentID="2"> <name> NexthopID </name> <synopsis>index to the nexthop table.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name> IPv6LPMClassiferStatisticsType </name> <!-- XXX: Needs more discussion --> <synopsis>statistics of IPv6LPMClassifier LFB</synopsis> <struct> <component componentID="1"> <name> InRcvdPkts </name> <synopsis>The total number of input packets received from interfaces, including those received in error</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name> FwdPkts </name> <synopsis>IPv4 packet forwarded by this LFB</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name> NoRoutePkts </name> <synopsis>The number of IP datagrams discarded because no route could be found to transmit them to their destination. </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name>InDeliverPkts</name> <synopsis>The total number of input datagrams successfully delivered to IP user-protocols (including ICMP).</synopsis> <typeRef>uint64</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name> IPv6ValidatorStatisticsType </name> <!-- XXX: Needs more discussion --> <synopsis>IPv6 validator LFB statistics type</synopsis> <struct> <component componentID="1"> <name> badHeaderPkts </name> <synopsis>The total number of input datagrams with bad ip header</synopsis> <typeRef>uint64</typeRef> </component> <component componentID="2"> <name> badTotalLengthPkts </name> <synopsis>The total number of input datagrams with bad length </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="3"> <name> badTTLPkts </name> <synopsis>The total number of input datagrams with bad TTL </synopsis> <typeRef>uint64</typeRef> </component> <component componentID="4"> <name> badChecksum</name> <synopsis>The total number of input datagrams with bad checksum</synopsis> <typeRef>uint64</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name> NextHopFlagsType </name> <!-- XXX: Needs more discussion --> <synopsis>Flags used to define different nexthop behaviors </synopsis> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x00000001"> <name>local</name> <synopsis>Packets match the nexthop entry with this flag are delivered to the higher level protocols.</synopsis> </specialValue> <specialValue value="0x00000002"> <name>drop</name> <synopsis>Packets match the nexthop entry with this flag are to be dropped.</synopsis> </specialValue> <specialValue value="0x00000004"> <name>broadcast</name> <synopsis>The route associated with this nexthop is a broadcast.</synopsis> </specialValue> <specialValue value="0x00000008"> <name>multicast</name> <synopsis>The route associated with this nexthop is multicast.</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>WeightTableEntryType</name> <!-- XXX: Needs more discussion --> <synopsis>Weight table for queues.</synopsis> <struct> <component componentID="1"> <name>QueueID</name> <synopsis>queue id</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>weight</name> <synopsis>weight of the queue.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>NbrState</name> <!-- XXX: Needs more discussion --> <synopsis>IPv6 neighbour entry resolution state.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="0x01"> <name>INCOMPLETE </name> <synopsis>Address resolution is being performed on entry. Specifically,a Neighbor Solicitation has been sent to the solicited-node multicast address of the target, but the corresponding Neighbor Advertisement has not yet been received.</synopsis> </specialValue> <specialValue value="0x02"> <name>REACHABLE</name> <synopsis>Positive confirmation was received within the last reachableTime milliseconds that the forward path to the neighbor was functioning properly. While reachable, no special action takes place as packets are sent.</synopsis> </specialValue> <specialValue value="0x03"> <name>STALE</name> <synopsis>More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly. While STALE, no action takes place until a packet is sent. The STALE state is entered upon receiving an unsolicited Neighbor Discovery message that updates the cached link-layer address. Receipt of such a message does not confirm reachability, and entering the STALE state insures reachability is verified quickly if the entry is actually being used. However, reachability is not actually verified until the entry is actually used.</synopsis> </specialValue> <specialValue value="0x04"> <name>DELAY</name> <synopsis>More than ReachableTime milliseconds have elapsed since the last positive confirmation was received that the forward path was functioning properly, and a packet was sent within the last DELAY_FIRST_PROBE_TIME seconds. If no reachability confirmation is received within DELAY_FIRST_PROBE_TIME seconds of entering the DELAY state, send a Neighbor Solicitation and change the state to PROBE. </synopsis> </specialValue> <specialValue value="0x05"> <name>PROBE</name> <synopsis>A reachability confirmation is actively sought by retransmitting Neighbor Solicitations every RetransTimer milliseconds until a reachability confirmation is received. </synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>ArpTableEntryType</name> <!-- XXX: Needs more discussion --> <synopsis>Arp entry.</synopsis> <struct> <component componentID="1"> <name>Index</name> <synopsis>Index of the arp table.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>NeighborIP</name> <synopsis>IP address of the neighbour.</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="3"> <name>SrcMac</name> <synopsis>Source MAC.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="4"> <name>NeighborMac</name> <synopsis>Mac of the Neighbor.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="5"> <name>State</name> <synopsis>State of the address resolution progress</synopsis> <typeRef>ArpStateType</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>NbrTableEntryType</name> <!-- XXX: Needs more discussion --> <synopsis>IPv6 neighbour table entry.</synopsis> <struct> <component componentID="1"> <name>Index</name> <synopsis>Index of the arp table.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>NeighborIPv6</name> <synopsis>IP address of the neighbour.</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="3"> <name>SrcMac</name> <synopsis>Source MAC.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="4"> <name>NeighborMac</name> <synopsis>Mac of the Neighbor.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="5"> <name>State</name> <synopsis>State of the entry's resolution progress</synopsis> <typeRef>NbrState</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>DCHostTableEntryTypev4</name> <!-- XXX: Needs more discussion --> <synopsis>Direct connected arp table entry for IPv4. </synopsis> <struct> <component componentID="1"> <name>NeighbourIP</name> <synopsis>IP address of the neighbour.</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="2"> <name>SrcMac</name> <synopsis>Source MAC.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="3"> <name>NeighborMac</name> <synopsis>Mac of the Neighbor.</synopsis> <typeRef>IEEEMAC</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>DCHostTableEntryTypev6</name> <!-- XXX: Needs more discussion --> <synopsis>Direct connected arp table entry for IPv6. </synopsis> <struct> <component componentID="1"> <name>NeighbourIPv6</name> <synopsis>IP address of the neighbour.</synopsis> <typeRef>IPv6Addr</typeRef> </component> <component componentID="2"> <name>SrcMac</name> <synopsis>Source MAC.</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="3"> <name>NeighborMac</name> <synopsis>Mac of the Neighbor.</synopsis> <typeRef>IEEEMAC</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>IPPacketType</name> <!-- XXX: Needs more discussion --> <synopsis>The packet type code.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="1"> <name>IPv4Ucast</name> <synopsis>IPv4 unicast packet.</synopsis> </specialValue> <specialValue value="2"> <name>IPv4Mcast</name> <synopsis>IPv4 multicast packet.</synopsis> </specialValue> <specialValue value="3"> <name>IPv6Ucast</name> <synopsis>IPv6 unicast packet.</synopsis> </specialValue> <specialValue value="4"> <name>IPv6Mcast</name> <synopsis>IPv6 multicast packet.</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>IPDispatchTableType</name> <!-- XXX: Needs more discussion --> <synopsis>The dispatch table type.</synopsis> <struct> <component componentID="1"> <name>IPPacketType</name> <synopsis>The type of the packet.IPv4Uncast,IPv6Ucast, IPv4Mulcast,IPv6Mulcast etc.</synopsis> <typeRef>IPPacketType</typeRef> </component> <component componentID="2"> <name>index</name> <synopsis>The index of the output group to output the packets </synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>MetaType</name> <synopsis>Metadata type definition.</synopsis> <struct> <component componentID="1"> <name>MetadataID</name> <synopsis>The ID of the metadata,the value is standardalized in the corresponding LFB definition RFCs.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>MetadataName</name> <synopsis>The name of the metadata.</synopsis> <typeRef>String</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>MetadataClassTableType</name> <!-- XXX: Needs more discussion --> <synopsis>The meta data classifying table.</synopsis> <struct> <component componentID="1"> <name>value</name> <synopsis>Value of the meta data.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>index</name> <synopsis>The index of the port in the output group to use for outputing the packets.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>LinkEncapType</name> <!-- XXX: Needs more discussion --> <synopsis>Encapsulation type.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="1"> <name>Link</name> <synopsis>Link layer encapsulation such as Ethernet and PPP.</synopsis> </specialValue> <specialValue value="2"> <name>InterFE</name> <synopsis>Inter FE communication encapsulation.</synopsis> </specialValue> <specialValue value="3"> <name>Tunnel</name> <synopsis>Tunnel encapsulation such as IP-in-IP.</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>IPAddress</name> <!-- XXX: Do we need a union of IPAddressess?--> <synopsis>IP layer address.</synopsis> <union> <component componentID="1"> <name>Ipv4</name> <synopsis>IPv4 address.</synopsis> <typeRef>IPv4Addr</typeRef> </component> <component componentID="2"> <name>Ipv6</name> <synopsis>IPv6 address.</synopsis> <typeRef>IPv6Addr</typeRef> </component> </union> </dataTypeDef> <dataTypeDef> <name>ArpStateType</name> <!-- XXX: Needs more discussion --> <synopsis>The arp entry state.</synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="1"> <name>Manual</name> <synopsis>The entry is manually set.</synopsis> </specialValue> <specialValue value="2"> <name>InSolicit</name> <synopsis>The peer's level 2 address is still in requesting </synopsis> </specialValue> <specialValue value="4"> <name>Valid</name> <synopsis>The address resolution have been completed successfully,it now can be used in the data packets forwarding.</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>MatchTargetType</name> <!-- XXX: Needs more discussion --> <synopsis> Indicator for the kind of field to be matched by this entry in a classifier. </synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="0"> <name>MatchNone</name> <synopsis>A matcher against no field</synopsis> </specialValue> <specialValue value="1"> <name>MatchMetaData</name> <synopsis>A matcher against a metadata item</synopsis> </specialValue> <specialValue value="2"> <name>MatchPacketField</name> <synopsis> A matcher that works against an identified packet field.</synopsis> </specialValue> <specialValue value="3"> <name>MatchOffsetLength</name> <synopsis>The match target is a specified portion of the packet.</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>MatchTargetIdentifier</name> <!-- XXX: Needs more discussion --> <synopsis> Identify the specific target of a match condition. </synopsis> <union> <component componentID="1"> <name>MetaDataID</name> <synopsis>The ID of a metadata item</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>packetFieldID</name> <synopsis>The identifier for a packet Field, such as SA, DA, Protocol, SPort, DPort, etc. These identifiers allow references to fields with varialbe amounts before them. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="3"> <name>OffSetLengthPacketField</name> <synopsis>A field in the packet identified by its offset and length in bits. This does not allow for matching fields whose position depends upon earlier field sizes.</synopsis> <struct> <component componentID="1"> <name>fieldOffset</name> <synopsis>The offset in bits from the start of the packet to the start of the field.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>fieldLength</name> <synopsis>The length of the field, in bits</synopsis> <typeRef>uint32</typeRef> </component> </struct> </component> </union> </dataTypeDef> <dataTypeDef> <name>MatchBitString</name> <!-- XXX: Needs more discussion --> <synopsis>A bit string for use in a match condition.</synopsis> <struct> <component componentID="1"> <name>MatchBits</name> <synopsis>The bits to match</synopsis> <typeRef>octetstring[16]</typeRef> </component> <component componentID="2"> <name>MatchLength</name> <synopsis>The number of bits to match</synopsis> <typeRef>uchar</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>MatchCondition</name> <!-- XXX: Needs more discussion --> <synopsis> structure for a single condition to be applied. </synopsis> <struct> <component componentID="1"> <name>TargetType</name> <synopsis>The category of target to match</synopsis> <typeRef>MatchTargetType</typeRef> </component> <component componentID="2"> <name>TargetID</name> <synopsis>The specific target to compare</synopsis> <typeRef>MatchTargetIdentifier</typeRef> </component> <component componentID="3"> <name>MatchType</name> <synopsis>The kind of match to apply.</synopsis> <typeRef>MatchConditionType</typeRef> </component> <component componentID="4"> <name>MatchParamOne</name> <synopsis>The first parameter for the match</synopsis> <optional/> <typeRef>MatchBitString</typeRef> </component> <component componentID="5"> <name>MatchParamTwo</name> <synopsis>The second parameter for the match</synopsis> <optional/> <typeRef>MatchBitString</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>MatchConditiontType</name> <!-- XXX: Needs more discussion --> <synopsis> Indicator for the kind of match condition to be applied. </synopsis> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="0"> <name>MatchNone</name> <synopsis>A matcher which always fails</synopsis> </specialValue> <specialValue value="1"> <name>MatchExact</name> <synopsis> The target and the match value must be the same, with no padding.Only the first value of the match condition is used. The first match value must be occur.</synopsis> </specialValue> <specialValue value="2"> <name>MatchLeft</name> <synopsis>The target must begin with the first match value. If there is a second match value, the remainder of the target must match repeated occurrances of the second value. Thus, this can be used to allow any terminal content, or specific ending pad. The first match value must occur. </synopsis> </specialValue> <specialValue value="3"> <name>MatchRight</name> <synopsis> The target must end with the first match value. If there is a second match value, the preceding part of the target must match repeated occurrances of the second value. Thus, this can be used to allow any leading content, or specific leading fill. The first match value must occur. </synopsis> </specialValue> <specialValue value="4"> <name>MatchRange</name> <synopsis> The match values will be considered as numbers, and the target must be greater than or equal to the first match value, and less than or equal to the second match value. An omitted match value means that end of the range is unlimitted.</synopsis> </specialValue> <specialValue value="5"> <name>MatchMaskedValue</name> <synopsis> The target the the first value are each anded with the second value. The match succeeds if the results of these and operations are identical. Both values are required.</synopsis> </specialValue> <specialValue value="6"> <name>MatchSucceed</name> <synopsis>A Match which always succeeds</synopsis> </specialValue> </specialValues> </atomic> </dataTypeDef> <dataTypeDef> <name>MatchMetaDataAction</name> <!-- XXX: Needs more discussion --> <synopsis>An action to set a metadata item to either a specific value or a field from the incoming meta data or packet</synopsis> <struct> <component componentID="1"> <name>MetaDataToSet</name> <synopsis>The Meta Data Item to set</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>ExplicitValueToSet</name> <synopsis>A value to set the metadata to</synopsis> <optional/> <typeRef>octetstring[16]</typeRef> </component> <component componentID="3"> <name>ValueFromCondition</name> <synopsis> This is an index into the corresponding match conditions, and the meta data will be set to the value that was tested by that condition. </synopsis> <optional/> <typeRef>uint32</typeRef> </component> </struct> </dataTypeDef> <dataTypeDef> <name>NextHopIndex</name> <synopsis>An index used by the next hop table.Typically stored in and generated as metadata by the longest-prefix-match LFB </synopsis> <typeRef>int32</typeRef> </dataTypeDef> </dataTypeDefs> <metadataDefs> <metadataDef> <name>NextHopID</name> <synopsis>Index into a Next Hop entry in Nexthop table</synopsis> <metadataID>1</metadataID> <typeRef>NextHopIndex</typeRef> </metadataDef> <metadataDef> <name>ExceptionID</name> <!-- XXX: Needs more discussion. See that it applies to all LFBs. --> <synopsis>Exception Types</synopsis> <metadataID>2</metadataID> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x00000001"> <name>Options</name> <synopsis>Packets with options,for IPv6 Packet with next-header set to hop-by-hop header(0).</synopsis> </specialValue> <specialValue value="0x00000002"> <name>LengthMismatch</name> <synopsis>The packet length reported by link layer is less than the total length field.</synopsis> </specialValue> <specialValue value="0x00000003"> <name> BadTTL </name> <synopsis>The packet can't be forwarded as the TTL has expired.</synopsis> </specialValue> <specialValue value="0x00000004"> <name> Multicast </name> <synopsis>The packet received is a multicast packet. </synopsis> </specialValue> <specialValue value="0x00000005"> <name>FragRequired</name> <synopsis>The MTU for outgoing interface is less than the packet size.</synopsis> </specialValue> <specialValue value="0x00000006"> <name>Redirect</name> <synopsis>The outgoing port is same as the one on which the packet is received.</synopsis> </specialValue> <specialValue value="0x00000007"> <name>LocalDelivery</name> <synopsis>The packet is for a local interface.</synopsis> </specialValue> <specialValue value="0x00000008"> <name>LimitedBroadcast</name> <synopsis>Packet received as limited broadcast.</synopsis> </specialValue> </specialValues> </atomic> </metadataDef> <metadataDef> <name>IngressPort</name> <synopsis>At which interface the packet arrive.</synopsis> <metadataID>3</metadataID> <typeRef>ifIndex</typeRef> </metadataDef> <metadataDef> <name>EgressPort</name> <synopsis>Interface out which the packet will emmit.</synopsis> <metadataID>4</metadataID> <typeRef>ifIndex</typeRef> </metadataDef> <metadataDef> <name>NextHopIP</name> <!-- XXX: Needs more discussion if this is metadata--> <synopsis>Nexthop IPv4 address</synopsis> <metadataID>5</metadataID> <typeRef>IP4Addr </typeRef> </metadataDef> <metadataDef> <name>NexthopIPv6</name> <!-- XXX: Needs more discussion if this is metadata--> <synopsis>Nexthop IPv6 address</synopsis> <metadataID>6</metadataID> <typeRef>IPv6Addr</typeRef> </metadataDef> <metadataDef> <name>PacketLength</name> <synopsis>The length of the packet in octets.</synopsis> <metadataID>7</metadataID> <typeRef>uint32</typeRef> </metadataDef> <metadataDef> <name>IPPacketType </name> <!--XXX: Needs more discussion. Should match frameDefs.--> <synopsis>Type of the packet</synopsis> <metadataID>8</metadataID> <atomic> <baseType>uint32</baseType> <specialValues> <specialValue value="0x8000"> <name> IPv4 </name> <synopsis>IPv4 packet</synopsis> </specialValue> <specialValue value="0x86DD"> <name> IPv6 </name> <synopsis>IPv6 packet</synopsis> </specialValue> <specialValue value="3"> <name> TaggedFrame </name> <synopsis>packet with metadata</synopsis> </specialValue> <specialValue value="4"> <name> MetaDataFrame </name> <synopsis>meta data only</synopsis> </specialValue> </specialValues> </atomic> </metadataDef> <metadataDef> <name>QueueID </name> <!-- XXX: Needs more discussion --> <synopsis>The queue ID</synopsis> <metadataID>9</metadataID> <typeRef> uint32</typeRef> </metadataDef> <metadataDef> <name>QueueOperationCmd</name> <!-- XXX: Needs more discussion --> <synopsis>The type of operation on the queue,there are two types defined here: enqueue and dequeue.</synopsis> <metadataID>10</metadataID> <atomic> <baseType>uchar</baseType> <specialValues> <specialValue value="1"> <name>Enqueue</name> <synopsis>Enqueue command.</synopsis> </specialValue> <specialValue value="2"> <name>Dequeue</name> <synopsis>Dequeue command.</synopsis> </specialValue> </specialValues> </atomic> </metadataDef> <metadataDef> <name>SrcFEID</name> <synopsis>Source FE ID.</synopsis> <metadataID>11</metadataID> <typeRef>uint32</typeRef> </metadataDef> <metadataDef> <name>DstFEID</name> <synopsis>Destination FE ID.</synopsis> <metadataID>12</metadataID> <typeRef>uint32</typeRef> </metadataDef> <metadataDef> <name>NexthopIndex</name> <!-- XXX: This should be removed --> <synopsis>Nexthop index into the link layer address resolution table.</synopsis> <metadataID>13</metadataID> <typeRef>uint</typeRef> </metadataDef> <metadataDef> <name>NHEncapMethod</name> <!--XXX: Is there any value in this?--> <synopsis>how should the following LFBs do to encapsulate the packets,such as link encapsulation which means the packets need to encapsulate link layer header before sending to media;inter FE communication encapsulation which means the packets need to first encapsulate inter FE communication header before transimiting to other FEs;tunnel encapsulation which means the packet need do extra tunnel encapsulation before sending out to media</synopsis> <metadataID>14</metadataID> <typeRef>LinkEncapType</typeRef> </metadataDef> <metadataDef> <name>ErrorId</name> <!-- XXX: Needs more discussion --> <synopsis>Error Type.</synopsis> <metadataID>15</metadataID> <atomic> <baseType>int32</baseType> <specialValues> <specialValue value="0x00030001"> <name>WrongIpVersion</name> <synopsis>the IP version wrong</synopsis> </specialValue> <specialValue value="0x00030002"> <name>WrongLength</name> <synopsis> the packet length is not as long as the header indicates </synopsis> </specialValue> <specialValue value="0x000300FF"> <name>otherError</name> <synopsis>The errors we not defined now</synopsis> </specialValue> </specialValues> </atomic> </metadataDef> </metadataDefs> <LFBClassDefs> <LFBClassDef LFBClassID="3"> <name>EtherPort</name> <!--XXX:Should this be one LFB merged with the other Ether LFBs--> <synopsis>LFB for Ethernet ports</synopsis> <version>1.0</version> <derivedFrom>GenericConnectivityLFB</derivedFrom> <inputPorts> <inputPort> <name>PacketsFromProcessingUnit</name> <synopsis>Ports for receiving packets from processing unit such as NP,that will be sent to media.</synopsis> <expectation> <frameExpected> <ref>EthernetII</ref> </frameExpected> <metadataExpected> <ref>OutputPort</ref> </metadataExpected> </expectation> </inputPort> <inputPort> <name>PacketsFromMedia</name> <synopsis>Ports for receiving packets from ethernet media. </synopsis> <expectation> <frameExpected> <ref>EthernetII</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>PacketsToProcessingUnit</name> <synopsis>Ports for sending packets to processing unit such as NP for further processing.</synopsis> <product> <frameProduced> <ref>EthernetII</ref> </frameProduced> <metadataProduced> <ref>InputPort</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>PacketsToMedia</name> <synopsis>Ports for sending packets to media.</synopsis> <product> <frameProduced> <ref>EthernetII</ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name>IfIndex</name> <synopsis>A unique value for each interface. Its value ranges between 1 and the value of total number of interfaces in the system. The value for each interface must remain constant at least from one re-initialization of the entity's network management system to the next re-initialization.</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>IfName</name> <synopsis>Name of this port</synopsis> <typeRef>string[16]</typeRef> </component> <component componentID="3"> <name>LinkSpeed</name> <synopsis>Speed of this port</synopsis> <typeRef>NetSpeedType</typeRef> </component> <component componentID="4"> <name>MTU</name> <synopsis>Maximum transmition unit</synopsis> <typeRef>uint32</typeRef> </component> <component componentID="5" access="read-only"> <name>OperaStatus</name> <synopsis>Operate state of this port.</synopsis> <typeRef>PortStatusValues</typeRef> <defaultValue>"down"</defaultValue> </component> <component componentID="6"> <name>AdminStatus</name> <synopsis>Administrator's state of this port</synopsis> <typeRef>PortStatusValues</typeRef> <defaultValue>"down"</defaultValue> </component> <component componentID="7"> <name>PromiscuousMode</name> <synopsis>Whether the interface is in promiscuous mode </synopsis> <typeRef>booleanType</typeRef> <defaultValue>"no"</defaultValue> </component> <component componentID="8" access="read-only"> <name>CarrierStatus</name> <synopsis>whether the port is linked with an connector. </synopsis> <typeRef>booleanType</typeRef> <defaultValue>"no"</defaultValue> </component> <component componentID="9"> <name>OperMode</name> <synopsis>The port operation mode,must be one of the following values:Auto,Half-duplex,Full-duplex</synopsis> <typeRef>IEEENegotiationType</typeRef> <defaultValue>"auto"</defaultValue> </component> <component componentID="10"> <name>SrcNegotiationTypeMACAddr</name> <synopsis>source MAC</synopsis> <typeRef>IEEEMAC</typeRef> </component> <component componentID="11"> <name>MacAliasTable</name> <synopsis>A series of MACs that the port can receive frame on.</synopsis> <array> <typeRef>IEEEMAC</typeRef> </array> </component> <component componentID="12"> <name>StatsEnable</name> <synopsis>whether enable the statistics in this LFB. </synopsis> <optional/> <typeRef>booleanType</typeRef> <defaultValue>"no"</defaultValue> </component> <component componentID="13" access="read-reset"> <name>PortStats</name> <synopsis>port statistics.</synopsis> <optional/> <typeRef>PortStatsType</typeRef> </component> <component componentID="14"> <name>Ipaddr</name> <synopsis>IP layer Address.</synopsis> <typeRef>IPAddress</typeRef> </component> </components> <events baseID="100"> <event eventID="1"> <name>PortStatusChanged</name> <synopsis>Port status has changed since last time reporting. </synopsis> <eventTarget> <eventField>OperaStatus</eventField> </eventTarget> <eventChanged/> <eventReports> <eventReport> <eventField>OperaStatus</eventField> </eventReport> </eventReports> </event> </events> </LFBClassDef> <LFBClassDef LFBClassID="4"> <name>EtherDecap</name> <!--XXX:Should this be merged with the EtherPort?--> <synopsis>An LFB class for definition of Ethernet decapsulation and Ethernet filtering functions</synopsis> <version>1.0</version> <derivedFrom>GenericConnectivityLFB</derivedFrom> <inputPorts> <inputPort> <name>PacketsIn</name> <synopsis>Packets from other LFB.</synopsis> <expectation> <frameExpected> <ref>EthernetII</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort group="true"> <name>DecapOut</name> <synopsis>Ethernet decapsulation output.</synopsis> <product> <frameProduced> <ref>Arbitrary</ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name>DispatchTable</name> <synopsis>This table is used for selecting output in the ouput group for the incoming packet stream.</synopsis> <typeRef>IPDispatchTableType</typeRef> </component> </components> </LFBClassDef> <LFBClassDef LFBClassID="6"> <name>IPv4UcastLPM</name> <synopsis>IPv4 Longest Prefix Match Lookup LFB</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>The port to receive IPv4 packets from other LFBs </synopsis> <expectation> <frameExpected> <ref>IPv4</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>SuccessOut</name> <synopsis>Successful output when all is fine.</synopsis> <product> <frameProduced> <ref>IPv4</ref> </frameProduced> <metadataProduced> <ref availability="conditional">NextHopID</ref> <ref availability="conditional">FEID</ref> <ref availability="conditional">Egress</ref> <ref availability="conditional">MTU</ref> <ref availability="conditional">Flags</ref> <ref availability="conditional">NexthopIPAddr</ref> <ref availability="conditional">NHEncapMethod</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>ExceptionOut</name> <synopsis>Exception output</synopsis> <product> <frameProduced> <ref>IPv4</ref> </frameProduced> <metadataProduced> <ref>Ingress </ref> <ref>ExceptionID</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>FailOutput</name> <synopsis>Dropper</synopsis> <product> <frameProduced> <ref> IPv4 </ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name> PrefixTable </name> <synopsis>IPv4 prefix table</synopsis> <array type="variable-size"> <typeRef> IPv4PrefixTableEntry </typeRef> <contentKey contentKeyID="1"> <contentKeyField>IPv4PrefixTableEntry.prefix </contentKeyField> </contentKey> </array> </component> <component componentID="2"> <name>Fib</name> <synopsis>IPv4 unicast forwarding table.</synopsis> <optional/> <array type="variable-size"> <typeRef>IPv4FibEntryType</typeRef> <contentKey contentKeyID="1"> <contentKeyField>IPv4FibEntryType.prefix </contentKeyField> </contentKey> </array> </component> <component componentID="3"> <name>LocalIpAddrTable</name> <synopsis>The table of interfaces's ip address infomation on the local device</synopsis> <typeRef>LocalIpAddrType</typeRef> </component> <component componentID="4"> <name>IPv4Stats</name> <synopsis>The IPv4 associated statistics</synopsis> <optional/> <typeRef> IPv4UcastLPMStatisticsType </typeRef> </component> </components> <capabilities> <capability componentID="1"> <name>PrefixTableLimit</name> <synopsis>maxium number of prefix supported by this LFB </synopsis> <typeRef>uint32</typeRef> </capability> <capability componentID="2"> <name>LocalIpAddrTableLimit</name> <synopsis>maxium number of IP address entrys supported by this LFB</synopsis> <typeRef>uint32</typeRef> </capability> </capabilities> <description>This LFB represents the IPv4 longest prefix match lookup operation.</description> </LFBClassDef> <LFBClassDef LFBClassID="7"> <name> IPv4NextHopApplicator </name> <synopsis>An LFB definition for applicating next hop action to IPv4 packets,the actions include:TTL operation,checksum recalculation.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>Port used to receive IPv4 packets from other LFBs </synopsis> <expectation> <frameExpected> <ref> IPv4 </ref> </frameExpected> <metadataExpected> <ref dependency="optional" defaultValue="0xff">NextHopID </ref> <ref dependency="optional" defaultValue="0xff">FEID</ref> <ref dependency="optional" defaultValue="0xff">Egress </ref> <ref dependency="optional" defaultValue="0xff">MTU</ref> <ref dependency="optional" defaultValue="0xff">Flags </ref> <ref dependency="optional" defaultValue="0xff"> NexthopIPAddr</ref> <ref dependency="optional" defaultValue="0xff"> NHEncapMethod</ref> </metadataExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>SuccessOut</name> <synopsis>Output port for packet successfully fulfill the nexthop application.</synopsis> <product> <frameProduced> <ref> IPv4 </ref> </frameProduced> <metadataProduced> <ref>DstFEID</ref> <ref>Egress</ref> <ref availability="conditional">L2Index</ref> <ref>NextHopIP</ref> <ref availability="conditional">NHEncapMethod</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>ExceptionOut</name> <synopsis>Output for packets need deep dealt by higher level protocol stacks.</synopsis> <product> <frameProduced> <ref> IPv4 </ref> </frameProduced> <metadataProduced> <ref>Ingress</ref> <ref>ExceptionID</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>FailOutput</name> <synopsis>Output for packets failed the nexthop application operation.</synopsis> <product> <frameProduced> <ref> IPv4 </ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name> NextHopTable </name> <synopsis>Nexthop table</synopsis> <optional/> <array type="variable-size"> <typeRef> IPv4NextHopInfoType </typeRef> </array> </component> </components> <capabilities> <capability componentID="2"> <name>NextHopTableLimit</name> <synopsis>Maxium number of nexthops this LFB supports </synopsis> <typeRef>uint32</typeRef> </capability> </capabilities> </LFBClassDef> <LFBClassDef LFBClassID="9"> <name>IPv6UcastLPM</name> <synopsis>An LFB class definition for IPv6 longest prefix lookup function.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>The port to receive IPv6 packets needed to do IPv4 LPM.</synopsis> <expectation> <frameExpected> <ref>IPv6</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>SuccessOut</name> <synopsis>Output for packets that have find the correct route.</synopsis> <product> <frameProduced> <ref>IPv6</ref> </frameProduced> <metadataProduced> <ref>NextHopID</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>FailOutput</name> <synopsis>LPM failed.</synopsis> <product> <frameProduced> <ref> IPv6 </ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name> PrefixTable </name> <synopsis>IPv6 prefix table</synopsis> <array type="variable-size"> <typeRef> IPv6PrefixTableEntry </typeRef> <contentKey contentKeyID="1"> <contentKeyField>IPv6PrefixTableEntry.prefix </contentKeyField> </contentKey> </array> </component> <component componentID="2"> <name>LocalIpv6AddrTable</name> <synopsis>The table of interfaces's ip address infomation on the local device</synopsis> <typeRef>LocalIpv6AddrType</typeRef> </component> <component componentID="3" access="read-reset"> <name>IPv6Stats</name> <synopsis>The IPv6 associated statistics</synopsis> <optional/> <typeRef> IPv6LPMClassiferStatisticsType </typeRef> </component> </components> <capabilities> <capability componentID="1"> <name>PrefixTableLimit</name> <synopsis>maxium number of prefix supported by this LFB </synopsis> <typeRef>uint32</typeRef> </capability> <capability componentID="2"> <name>LocalIpv6AddrTableLimit</name> <synopsis>maxium number of IPv6 address entrys supported by this LFB</synopsis> <typeRef>uint32</typeRef> </capability> </capabilities> </LFBClassDef> <LFBClassDef LFBClassID="10"> <name>IPv6UcastNexthopApplicator</name> <synopsis>An LFB for applicating next hop action to IPv6 packets, actions mainly inlcude TTL incrementation and checksum recalculation.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>Input port for packets to be applicate nexthop. </synopsis> <expectation> <frameExpected> <ref> IPv6 </ref> </frameExpected> <metadataExpected> <ref>NextHopID</ref> </metadataExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>SuccessOut</name> <synopsis>Output port for packet successfully fulfill the nexthop application.</synopsis> <product> <frameProduced> <ref> IPv6 </ref> </frameProduced> <metadataProduced> <ref>FEID</ref> <ref>Egress</ref> <ref availability="conditional">L2Index</ref> <ref>NextHopIPv6</ref> <ref availability="conditional">NHEncapMethod</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>ExceptionOut</name> <synopsis>Output port for exception packet.The following packets are identified as Exception packet:1 Packet with Hop Limit zero.2 The MTU for outgoing interface is less than the packet size.3 The outgoing port is same as the one on which the packet is received.4 The packet is for a local interface. </synopsis> <product> <frameProduced> <ref> IPv6 </ref> </frameProduced> <metadataProduced> <ref>Ingress</ref> <ref>ExceptionID</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>FailOutput</name> <synopsis>Output for packets failed the nexthop application operation.</synopsis> <product> <frameProduced> <ref> IPv6 </ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name> NextHopTable </name> <synopsis>Nexthop table</synopsis> <array type="variable-size"> <typeRef> IPv6NextHopInfoType </typeRef> </array> </component> </components> <capabilities> <capability componentID="1"> <name>NextHopTableLimit</name> <synopsis>Maxium number of nexthops this LFB supports </synopsis> <typeRef>uint32</typeRef> </capability> </capabilities> </LFBClassDef> <LFBClassDef LFBClassID="11"> <name>EtherEncap</name> <!--XXX:Should this be merged with the EtherPort?--> <synopsis>An LFB classifier definition for completes ethernet encapsulation fuctions</synopsis> <version>1.0</version> <derivedFrom>GenericConnectivityLFB</derivedFrom> <inputPorts> <inputPort> <name>EncapIn</name> <synopsis>Port for receiving packets needed to build Ethernet encapsulation.</synopsis> <expectation> <frameExpected> <ref>IPv4</ref> <ref>IPv6</ref> </frameExpected> <metadataExpected> <ref dependency="optional" defaultValue="0">L2Index</ref> <one-of> <ref>NextHopIP</ref> <ref>NextHopIPv6</ref> </one-of> <ref>IPPacketType</ref> </metadataExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>SuccessOut</name> <synopsis/> <product> <frameProduced> <ref>EthernetII</ref> </frameProduced> </product> </outputPort> <outputPort group="true"> <name>ExceptionOut</name> <synopsis>packet can't find the associated L2 information </synopsis> <product> <frameProduced> <ref>IPv4</ref> <ref>IPv6</ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name>ArpTable</name> <synopsis>Ethernet arp table.</synopsis> <array> <typeRef>ArpTableEntryType</typeRef> </array> </component> <component componentID="2"> <name>NbrTable</name> <synopsis>IPv6 neighbour table.</synopsis> <optional/> <array> <typeRef>NbrTableEntryType</typeRef> </array> </component> <component componentID="3"> <name>DCHostTablev4</name> <synopsis>Direct connected host arp table for IPv4</synopsis> <array> <typeRef>DCHostTableEntryTypev4</typeRef> </array> </component> <component componentID="4"> <name>DCHostTablev6</name> <synopsis>Direct connected host arp table for IPv6</synopsis> <optional/> <array> <typeRef>DCHostTableEntryTypev6</typeRef> </array> </component> </components> <capabilities> <capability componentID="1"> <name>ArpTableLimit</name> <synopsis>Max number of arp entries in arp table.</synopsis> <typeRef>uint32</typeRef> </capability> <capability componentID="2"> <name>NbrTableLimit</name> <synopsis>Max number of neighbours in neighbour table. </synopsis> <optional/> <typeRef>uint32</typeRef> </capability> <capability componentID="3"> <name>DCHostTablev4Limit</name> <synopsis>The limit on Direct connected host table for IPv4. </synopsis> <typeRef>uint32</typeRef> </capability> <capability componentID="4"> <name>DCHostTablev6Limit</name> <synopsis>The limit on Direct connected host table for IPv6. </synopsis> <optional/> <typeRef>uint32</typeRef> </capability> </capabilities> </LFBClassDef> <LFBClassDef LFBClassID="12"> <name>Scheduler</name> <synopsis>Base scheduler LFB.</synopsis> <version>1.0</version> <inputPorts> <inputPort group="true"> <name>Watcher</name> <synopsis>Input for watching the queues to be scheduled. Queues to be scheduled can transmit packet enqueue and dequeue infomation to scheduler through these port</synopsis> <expectation> <frameExpected> <ref>MetadataFrame</ref> </frameExpected> <metadataExpected> <ref>QueueID</ref> <ref>PacketLength</ref> <ref>QueueOperationCmd</ref> </metadataExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort group="true"> <name>OutControl</name> <synopsis>Control output,this output is used by scheduler to communicate commands to it's controlled queues such as dequeue a packet.</synopsis> <product> <frameProduced> <ref>MetadataFrame</ref> </frameProduced> <metadataProduced> <ref>QueueOperationCmd</ref> </metadataProduced> </product> </outputPort> </outputPorts> <capabilities> <capability componentID="1"> <name>QueueScheduledLimit</name> <synopsis>Max number of queues that can be scheduled by this scheduler.</synopsis> <typeRef>uint32</typeRef> </capability> </capabilities> <description>This defines a base LFB class for schedulers. Schedulers have an Input Port group called Watchers for representing the queues they watch, and an Output Port group called Controllers fro representing the queues they control. </description> </LFBClassDef> <LFBClassDef LFBClassID="13"> <name>Queue </name> <synopsis>Queue LFB.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>InControl</name> <synopsis>Input from scheduler</synopsis> <expectation> <metadataExpected> <ref>QueueOperationCmd</ref> </metadataExpected> </expectation> </inputPort> <inputPort> <name>InData</name> <synopsis>Input port for data packet.</synopsis> <expectation> <frameExpected> <ref>Arbitrary</ref> </frameExpected> <metadataExpected> <ref>PacketLength</ref> </metadataExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>OutToController</name> <synopsis>Output to queue controller</synopsis> <product> <frameProduced> <ref>MetadataFrame</ref> </frameProduced> <metadataProduced> <ref>QueueID</ref> <ref>PacketLength</ref> <ref>QueueOperationCmd</ref> </metadataProduced> </product> </outputPort> <outputPort> <name>OutData</name> <synopsis>Data packet output</synopsis> <product> <frameProduced> <ref>Arbitrary</ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name>CurLen</name> <synopsis>Current length of the queue in number of packets. </synopsis> <typeRef>uint32</typeRef> </component> </components> <capabilities> <capability componentID="1"> <name>QueueLenLimit</name> <synopsis>Maximum length of the queue in number of packets. </synopsis> <typeRef>uint32</typeRef> </capability> </capabilities> <description>Queues have a packet input, a packet output, a control input, and a group of control outputs. The control ports represent the control relationships with scheduluers. </description> </LFBClassDef> <LFBClassDef LFBClassID="16"> <name>WRRSched</name> <synopsis>Weighted round robin scheduler.</synopsis> <version>1.0</version> <derivedFrom>Scheduler</derivedFrom> <components> <component componentID="1"> <name>WeightTable</name> <synopsis>Weight table for queues to be scheduled. </synopsis> <array type="variable-size"> <typeRef>WeightTableEntryType</typeRef> </array> </component> </components> </LFBClassDef> <LFBClassDef LFBClassID="17"> <name>IPv6AddrResolution</name> <synopsis>This LFB class provides the function of IPv6 address resolution part of neighbor discovery protocol.It provides an offload of ND protocol processing to FE.It process the following ND messages:neighbour solicitation and neighbour advertisement. </synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>AddrResDataPktIn</name> <synopsis>The IPv6 data packet that need to do the address resolution.</synopsis> <expectation> <frameExpected> <ref>IPv6</ref> </frameExpected> </expectation> </inputPort> <inputPort> <name>AddrResProtoPktIn</name> <synopsis>The neighbour discovery packet related to address resolution.</synopsis> <expectation> <frameExpected> <ref>IPv6</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>AddrResDataPktOut</name> <synopsis>The IPv6 packet that have encapsulated with the correct ethernet L2 info and need to be sent out to link. </synopsis> <product> <frameProduced> <ref>EthernetII</ref> </frameProduced> </product> </outputPort> <outputPort> <name>AddrResProtoPktOut</name> <synopsis>The IPv6 neighbour discovey packet wich has been encapsulation with the correct ethernet L2 info.</synopsis> <product> <frameProduced> <ref>EthernetII</ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name>Nbrtable</name> <synopsis>This table is an alias to the IPv6 neighbour table in the EtherEncap LFB.</synopsis> <alias>NbrTable</alias> </component> </components> </LFBClassDef> <LFBClassDef LFBClassID="18"> <name>ICMPv6Generator</name> <synopsis>This LFB class provide some basic ICMPv6 function,it only generate the following ICMP messages for the packets that need some basic icmp processing:destination not reachable and time excceeded.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>The IPv6 packet that need icmp processing. </synopsis> <expectation> <frameExpected> <ref>IPv6</ref> </frameExpected> <metadataExpected> <ref>ExceptionID</ref> </metadataExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>ICMPv6PktOut</name> <synopsis>The output for the ICMPv6 packets generated according to the input IPv6 packet and the ExceptionID. </synopsis> <product> <frameProduced> <ref>IPv6</ref> </frameProduced> </product> </outputPort> </outputPorts> </LFBClassDef> <LFBClassDef LFBClassID="19"> <name>ExtendHeaderProc</name> <synopsis>This LFB class process the IPv6 packet with extended header,For the moment,the packets to this LFB are redirect to RedirectSink LFB by default.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>The IPv6 packet with extended header in.</synopsis> <expectation> <frameExpected> <ref>IPv6</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort group="true"> <name>PktOut</name> <synopsis>According to the Extended header type the packet may have different next proccesing LFB.Now by default we send all the packet with extended header to CE.</synopsis> <product> <frameProduced> <ref>IPv6</ref> </frameProduced> </product> </outputPort> </outputPorts> </LFBClassDef> <LFBClassDef LFBClassID="20"> <name>arp</name> <synopsis>This LFB class provides the function of address resolution for IPv4 nodes.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>AddrResDataPktIn</name> <synopsis>The IPv4 data packet that need to do the address resolution.</synopsis> <expectation> <frameExpected> <ref>IPv4</ref> </frameExpected> </expectation> </inputPort> <inputPort> <name>ArpPktIn</name> <synopsis>The neighbour discovery packet related to address resolution.</synopsis> <expectation> <frameExpected> <ref>IPv4</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>AddrResDataPktOut</name> <synopsis>The IPv4 packet that have been encapsulated with the correct ethernet L2 info and need to be sent out to link. </synopsis> <product> <frameProduced> <ref>EthernetII</ref> </frameProduced> </product> </outputPort> <outputPort> <name>ArpOut</name> <synopsis>The arp packet out.</synopsis> <product> <frameProduced> <ref>EthernetII</ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name>Arptable</name> <synopsis>This table is an alias of the arp table in the EtherEncap LFB.</synopsis> <alias>ArpTable</alias> </component> </components> </LFBClassDef> <LFBClassDef LFBClassID="21"> <name>ICMPGenerator</name> <synopsis>This LFB class provide some basic ICMP function,it only generate the following ICMP messages:ICMP destination unreachable and time excceeded.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>IPv4 packet that need icmp processing.</synopsis> <expectation> <frameExpected> <ref>IPv4</ref> </frameExpected> <metadataExpected> <ref>ExceptionID</ref> </metadataExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>ICMPPktOut</name> <synopsis>The output for the ICMP packets generated according to the input packet and the ExceptionID.</synopsis> <product> <frameProduced> <ref>IPv4</ref> </frameProduced> </product> </outputPort> </outputPorts> </LFBClassDef> <LFBClassDef LFBClassID="22"> <name>MetadataClassifier</name> <synopsis>This LFB class provides the function of classify packets according to the meta data.Now it only works on one meta data.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>Packets need to do the classification.</synopsis> <expectation> <frameExpected> <ref>Arbitrary</ref> </frameExpected> <metadataExpected> <ref>Arbitrary</ref> </metadataExpected> <!-- XXX:how to express here that we only need one meta data of any kind?The model says that variable tag metadata do this need but doesn't show how to use it.--> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort group="true"> <name>ClassifiedOut</name> <synopsis>Output group for the classified packets.</synopsis> <product> <frameProduced> <ref>Arbitrary</ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1"> <name>MetaDataID</name> <synopsis>The metadata id that this classifier works on. </synopsis> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>MetaDataName</name> <synopsis>The name of the meta data that this classifier works on.</synopsis> <typeRef>string</typeRef> </component> <component componentID="3"> <name>MetadataClassifyTable</name> <synopsis>The meta data classifying table.</synopsis> <typeRef>MetadataClassTableType</typeRef> </component> <component componentID="4"> <name>OutNumOfPorts</name> <synopsis>The number of ports in the output group.</synopsis> <typeRef>uint32</typeRef> </component> </components> <capabilities> <capability componentID="1"> <name>MaxOutNumOfPorts</name> <synopsis>Maxium number of ports in the output group. </synopsis> <typeRef>uint32</typeRef> </capability> </capabilities> </LFBClassDef> <LFBClassDef LFBClassID="23"> <name>OptionProc</name> <synopsis>This LFB class process the IPv4 packet with options,it can process on the following options:Router-alert option. </synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PktIn</name> <synopsis>The IPv4 packet with options in.</synopsis> <expectation> <frameExpected> <ref>IPv4</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort group="true"> <name>PktOut</name> <synopsis>According to the Option type the packet may have different next proccesing LFB.Now by default we send all the packet with extended header to CE.</synopsis> <product> <frameProduced> <ref>IPv4</ref> </frameProduced> </product> </outputPort> </outputPorts> </LFBClassDef> <LFBClassDef LFBClassID="65537"> <name>GenericConnectivityLFB</name> <synopsis> An LFB Class for providing connectivity between an FE and communications media. </synopsis> <version>1.0</version> <description>This LFB Class provides a generic basis for representing connectivity between the FE and the outside world. The LFB has one or more ports for packets that the FE processing logic is forwrding for transmission by this Connectivity LFB. It has one or more ports for packets that the Connectivity LFB has received and is handing to the FE processing logic. Multiple ports for handline packets are supported so that protocol specific encapsulation and demultiplexing can be provided by this LFB. This LFB also has ports for sending packets to lower layer Connectivity LFBs and receiving packets from such lower layer Connectivity LFBs. This enables support for the processing components of interface stacks, such as PPP over Ethernet or Ethernet over MPLS.For packets arriving from Media or lower layer connectivity, this LFB will perform appropriate media validation, then remove media specific headers, and place the relevant information in meta-data. For ethernet, the Source MAC would be in meta-data. For Frame Relay or ATM, a circuit identifier would be in meta-data. For Ethernet with VLANs, this meta-data would indicate which VLAN the packet came from. For packets to be transmitted, meta-data indicating the destination (destination MAC or outgoing circuit, etc.) is required. This LFB will also include statistical components such as the number of octets and packets sent and received, the number of various input and output errors, etc.</description> </LFBClassDef> <LFBClassDef LFBClassID="65538"> <name>RedirectLFB</name> <synopsis>An LFB Class definition for exchanging data packets between the FE and the CE.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>RedirectToCE</name> <synopsis> Port for frames to send to the CE. </synopsis> <expectation> <frameExpected> <ref>taggedFrame</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>RedirectFromCE</name> <synopsis> Port for frames to send to the CE </synopsis> <product> <frameProduced> <ref>taggedFrame</ref> </frameProduced> </product> </outputPort> </outputPorts> <description>This LFB represents a point of exchagne of data packets between the CE and the FE. Packets with meta-data are exchanged. It is expected that the output port of a RedirectLFB, if it is connected at all, will be connected to a meta-data redirector</description> </LFBClassDef> <LFBClassDef LFBClassID="65539"> <name>IPv4Validator</name> <synopsis>An LFB Class definition for validates the IPv4 packet. </synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>ValidatorIn</name> <synopsis> Normal packet input. </synopsis> <expectation> <frameExpected> <ref>IPv4</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>ValidatorOut</name> <synopsis> Normal packet Output. </synopsis> <product> <frameProduced> <ref>IPv4packet</ref> </frameProduced> </product> </outputPort> <outputPort> <name>FailOutput</name> <synopsis>The port to send packets that do not match any entries.</synopsis> <product> <frameProduced> <ref>taggedFrame</ref> </frameProduced> <metadataProduced> <ref>errorid</ref> </metadataProduced> </product> </outputPort> </outputPorts> <description>This LFB validates the IP version and header length fields, including verifying that the packet length is at least as long as the header indicates.</description> </LFBClassDef> <LFBClassDef LFBClassID="65540"> <name>IPv6Validator</name> <synopsis>An LFB Class definition for validates the IPv6 packet. </synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>ValidatorIn</name> <synopsis> Normal packet input. </synopsis> <expectation> <frameExpected> <ref>IPv6</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>ValidatorOut</name> <synopsis> Normal packet Output. </synopsis> <product> <frameProduced> <ref>IPv6packet</ref> </frameProduced> </product> </outputPort> <outputPort> <name>FailOutput</name> <synopsis>The port to send packets that do not match any entries.</synopsis> <product> <frameProduced> <ref>taggedFrame</ref> </frameProduced> <metadataProduced> <ref>errorid</ref> </metadataProduced> </product> </outputPort> </outputPorts> <description>This LFB validates the IP version and header length fields, including verifying that the packet length is at least as long as the header indicates.</description> </LFBClassDef> <LFBClassDef LFBClassID="65541"> <name>PacketTrimmer</name> <!--XXX:Needs further discussion--> <synopsis>LFB removes data from the front of a packet.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PacketIn</name> <synopsis> Normal packet input. </synopsis> <expectation> <frameExpected> <ref>Packet</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort> <name>PacketOut</name> <synopsis> Normal packet Output. </synopsis> <product> <frameProduced> <ref>Packet</ref> </frameProduced> </product> </outputPort> <outputPort> <name>FailOut</name> <synopsis> For packets without enough bytes to remove </synopsis> <product> <frameProduced> <ref>Packet</ref> </frameProduced> </product> </outputPort> </outputPorts> <components> <component componentID="1" access="read-write"> <name>TrimLength</name> <synopsis>amount to trim from each packet</synopsis> <typeRef>uint32</typeRef> </component> </components> </LFBClassDef> <LFBClassDef LFBClassID="65543"> <name>Duplicator</name> <!--XXX:Needs further discussion--> <synopsis>An LFB Class definition for packet duplicator LFB. Any packet received on an input port is logically copied and sent to all output ports.</synopsis> <version>1.0</version> <inputPorts> <inputPort> <name>PacketIn</name> <synopsis> Normal packet input. </synopsis> <expectation> <frameExpected> <ref>IPv4</ref> <ref>IPv6</ref> </frameExpected> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort group="true"> <name>PacketOut</name> <synopsis>Normal packet output port group</synopsis> <product> <frameProduced> <ref>IPv4</ref> <ref>IPv6</ref> </frameProduced> </product> </outputPort> </outputPorts> </LFBClassDef> <LFBClassDef LFBClassID="65544"> <name>ArbitraryClassifierLFB</name> <!--XXX:Needs further discussion--> <synopsis>A classifier which can test packet or metadata, and on that basis set meta-data a pick an output port.</synopsis> <version>1.0</version> <inputPorts> <inputPort group="true"> <name>PacketsToClassify</name> <synopsis> The group of ports to received packets over </synopsis> <expectation> <frameExpected> <ref>taggedFrame</ref> </frameExpected> <!-- no metadataExpected item as any and all meta data is allowed --> </expectation> </inputPort> </inputPorts> <outputPorts> <outputPort group="true"> <name>SuccessOutput</name> <synopsis> The group of ports used by the classifer for output when a successful match is found. </synopsis> <product> <frameProduced> <ref>taggedFrame</ref> </frameProduced> <!-- no metaDataProduced as anything can be produced --> </product> </outputPort> <outputPort group="false"> <name>FailOutput</name> <synopsis> The port to send packets that do not match any entries. </synopsis> <product> <frameProduced> <ref>taggedFrame</ref> </frameProduced> <!-- no metaDataProduced as anything can be produced --> </product> </outputPort> </outputPorts> <components> <component componentID="1" access="read-write"> <name>ClassifierTable</name> <synopsis>The table of classifier entries. Each entry is tested until one succeeds. Each entry contains an optional port test, an array of packet and meta data tests, an array of metadata actions, and an exit selection.</synopsis> <array type="variable-size"> <struct> <component componentID="1"> <name>InputPortTest</name> <synopsis>If present,this match will only match packets arriving over the specified port.</synopsis> <optional/> <typeRef>uint32</typeRef> </component> <component componentID="2"> <name>TestConditions</name> <synopsis>The array of conditions to test</synopsis> <array type="variable-size"> <typeRef>MatchCondition</typeRef> </array> </component> <component componentID="3"> <name>MetaDataActions</name> <synopsis>The array of meta data modifications to make when the match succeeds.</synopsis> <array type="variable-size"> <typeRef>MatchMetaDataAction</typeRef> </array> </component> <component componentID="4"> <name>MatchOutputPort</name> <synopsis>The port within the success group to send packets which match these tests.</synopsis> <typeRef>uint32</typeRef> </component> </struct> </array> </component> </components> </LFBClassDef> </LFBClassDefs> </LFBLibrary>
TOC |
Editorial:This section is supposed to discuss how we can build some basic applications define by WG charter such as IPV4 forwarding etc.
Putting together LFBs to form a specific packet processing application
TOC |
The authors would like to thank Jamal Hadi Salim and Ligang Dong who made a major contribution to the development of this document.
- Jamal Hadi Salim Mojatatu Networks
Ottawa, Ontario
Canada
Email: hadi@mojatatu.com
- Ligang Dong Zhejiang Gongshang University
149 Jiaogong Road
Hangzhou 310035
P.R.China
Phone: +86-571-28877751
EMail: donglg@mail.zjgsu.edu.cn
TOC |
This document is based on earlier documents from Joel Halpern, Ligang Dong, Fenggen Jia and Weiming Wang.
TOC |
This memo includes no request to IANA.
TOC |
These definitions if used by an FE to support ForCES create manipulable entities on the FE. Manipulation of such objects can produce almost unlimited effects on the FE. FEs should ensure that only properly authenticated ForCES protocol participants are performing such manipulations. Thus the security issues with this protocol are defined in the FE-protocol (Dong, L., Doria, A., Gopal, R., HAAS, R., Salim, J., Khosravi, H., and W. Wang, “ForCES Protocol Specification,” March 2009.) [I‑D.ietf‑forces‑protocol].
TOC |
TOC |
[I-D.ietf-forces-model] | Halpern, J. and J. Salim, “ForCES Forwarding Element Model,” draft-ietf-forces-model-16 (work in progress), October 2008 (TXT). |
[I-D.ietf-forces-protocol] | Dong, L., Doria, A., Gopal, R., HAAS, R., Salim, J., Khosravi, H., and W. Wang, “ForCES Protocol Specification,” draft-ietf-forces-protocol-22 (work in progress), March 2009 (TXT). |
TOC |
[RFC2119] | Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML). |
[RFC2629] | Rose, M., “Writing I-Ds and RFCs using XML,” RFC 2629, June 1999 (TXT, HTML, XML). |
[RFC3552] | Rescorla, E. and B. Korver, “Guidelines for Writing RFC Text on Security Considerations,” BCP 72, RFC 3552, July 2003 (TXT). |
[RFC3654] | Khosravi, H. and T. Anderson, “Requirements for Separation of IP Control and Forwarding,” RFC 3654, November 2003 (TXT). |
[RFC3746] | Yang, L., Dantu, R., Anderson, T., and R. Gopal, “Forwarding and Control Element Separation (ForCES) Framework,” RFC 3746, April 2004 (TXT). |
[RFC5226] | Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” BCP 26, RFC 5226, May 2008 (TXT). |
TOC |
Weiming Wang | |
Zhejiang Gongshang University | |
18, Xuezheng Str., Xiasha University Town | |
Hangzhou, 310018 | |
P.R.China | |
Phone: | +86-571-28877721 |
Email: | wmwang@mail.zjgsu.edu.cn |
Evangelos Haleplidis | |
University of Patras | |
Patras, | |
Greece | |
Email: | ehalep@ece.upatras.gr |
Kentaro Ogawa | |
NTT Corporation | |
Tokyo, | |
Japan | |
Email: | ogawa.kentaro@lab.ntt.co.jp |
Fenggen Jia | |
National Digital Switching Center(NDSC) | |
Jianxue Road | |
Zhengzhou, 452000 | |
P.R.China | |
Phone: | +86-571-28877751 |
Email: | jfg@mail.ndsc.com.cn,fgjia@mail.zjgsu.edu.cn |
Halpern Joel | |
Ericsson | |
P.O. Box 6049 | |
Leesburg, 20178 | |
VA | |
Phone: | +1 703 371 3043 |
Email: | jhalpern@redback.com |