Internet-Draft | Root Zone Trust Anchor Publication | December 2023 |
Abley, et al. | Expires 2 July 2024 | [Page] |
The root zone of the Domain Name System (DNS) has been cryptographically signed using DNS Security Extensions (DNSSEC).¶
In order to obtain secure answers from the root zone of the DNS using DNSSEC, a client must configure a suitable trust anchor. This document describes the format and publication mechanisms IANA intends to use to distribute the DNSSEC trust anchors.¶
This note is to be removed before publishing as an RFC.¶
Status information for this document may be found at https://datatracker.ietf.org/doc/draft-ietf-dnsop-rfc7958bis/.¶
Source for this draft and an issue tracker can be found at https://github.com/paulehoffman/draft-bash-rfc7958bis.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 2 July 2024.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
The Domain Name System (DNS) is described in [RFC1034] and [RFC1035]. DNS Security Extensions (DNSSEC) are described in [RFC9364].¶
In the DNSSEC protocol, Resource Record Sets (RRSets) are signed cryptographically. This means that a response to a query contains signatures that allow the integrity and authenticity of the RRSet to be verified. DNSSEC signatures are validated by following a chain of signatures to a "trust anchor". The reason for trusting a trust anchor is outside the DNSSEC protocol, but having one or more trust anchors is required for the DNSSEC protocol to work.¶
The publication of trust anchors for the root zone of the DNS is an IANA function performed by ICANN, through its affiliate Public Technical Identifiers (PTI). A detailed description of corresponding key management practices can be found in [DPS], which can be retrieved from the IANA Repository at <https://www.iana.org/dnssec/>.¶
This document describes the formats and distribution methods of DNSSEC trust anchors that have been used by IANA for the root zone of the DNS since 2010. Other organizations might have different formats and mechanisms for distributing DNSSEC trust anchors for the root zone; however, most operators and software vendors have chosen to rely on the IANA trust anchors.¶
The formats and distribution methods described in this document are a complement to, not a substitute for, the automated DNSSEC trust anchor update protocol described in [RFC5011]. That protocol allows for secure in-band succession of trust anchors when trust has already been established. This document describes one way to establish an initial trust anchor that can be used by RFC 5011.¶
The term "trust anchor" is used in many different contexts in the security community. Many of the common definitions conflict because they are specific to a specific system, such as just for DNSSEC or just for S/MIME messages.¶
In cryptographic systems with hierarchical structure, a trust anchor is an authoritative entity for which trust is assumed and not derived. The format of the entity differs in different systems, but the basic idea, that trust is assumed and not derived, is common to all the common uses of the term "trust anchor".¶
The root zone trust anchor formats published by IANA are defined in Section 2. [RFC4033] defines a trust anchor as "A configured DNSKEY RR or DS RR hash of a DNSKEY RR". Note that the formats defined here do not match the definition of "trust anchor" from [RFC4033]; however, a system that wants to convert the trusted material from IANA into a Delegation Signer (DS) RR can do so.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
This version of the document includes the following changes:¶
There is a signficant technical change from erratum 5932 <https://www.rfc-editor.org/errata/eid5932>. This is in the seventh paragraph of Section 2.1.2.¶
Added the optional public key element¶
The reference to the DNSSEC Practice Statement [DPS] was updated.¶
Say explicitly that the XML documents might have XML comments in them.¶
IANA publishes trust anchors for the root zone as an XML document that contains the hashes of the DNSKEY records.¶
This format and the semantics associated are described in the rest of this section.¶
Note that the XML document can have XML comments. For example, IANA might use these comments to add pointers to important information on the IANA web site. XML comments are only used as human-readable commentary, not extensions to the grammar.¶
The XML document contains a set of hashes for the DNSKEY records that can be used to validate the root zone. The hashes are consistent with the defined presentation format of DS resource.¶
The XML document also can contain the keys from the DNSKEY records. The keys are consistent with the defined presentation format of DNSKEY resource.¶
Note that the hashes are mandatory in the syntax, but the keys are optional.¶
A RELAX NG Compact Schema [RELAX-NG] for the documents used to publish trust anchors is given in Figure 1.¶
datatypes xsd = "http://www.w3.org/2001/XMLSchema-datatypes" start = element TrustAnchor { attribute id { xsd:string }, attribute source { xsd:string }, element Zone { xsd:string }, keydigest+ } keydigest = element KeyDigest { attribute id { xsd:string }, attribute validFrom { xsd:dateTime }, attribute validUntil { xsd:dateTime }?, element KeyTag { xsd:nonNegativeInteger { maxInclusive = "65535" } }, element Algorithm { xsd:nonNegativeInteger { maxInclusive = "255" } }, element DigestType { xsd:nonNegativeInteger { maxInclusive = "255" } }, element Digest { xsd:hexBinary }, element PublicKey { xsd:base64Binary }? } Figure 1¶
The TrustAnchor element is the container for all of the trust anchors in the file.¶
The id attribute in the TrustAnchor element is an opaque string that identifies the set of trust anchors. Its value has no particular semantics. Note that the id element in the TrustAnchor element is different than the id element in the KeyDigest element, described below.¶
The source attribute in the TrustAnchor element gives information about where to obtain the TrustAnchor container. It is likely to be a URL and is advisory only.¶
The Zone element in the TrustAnchor element states to which DNS zone this container applies. The root zone is indicated by a single period (.) character without any quotation marks.¶
The TrustAnchor element contains one or more KeyDigest elements. Each KeyDigest element represents the digest of a DNSKEY record in the zone defined in the Zone element.¶
The id attribute in the KeyDigest element is an opaque string that identifies the hash. Note that the id element in the KeyDigest element is different than the id element in the TrustAnchor element described above.¶
The validFrom and validUntil attributes in the KeyDigest element specify the range of times that the KeyDigest element can be used as a trust anchor. Note that the validUntil attribute of the KeyDigest element is optional. If the relying party is using a trust anchor that has a KeyDigest element that does not have a validUntil attribute, it can change to a trust anchor with a KeyDigest element that does have a validUntil attribute, as long as that trust anchor's validUntil attribute is in the future and the DNSKEY elements of the KeyDigest are the same as the previous trust anchor. Relying parties SHOULD NOT use a KeyDigest outside of the time range given in the validFrom and validUntil attributes.¶
The KeyTag element in the KeyDigest element contains the key tag for the DNSKEY record represented in this KeyDigest.¶
The Algorithm element in the KeyDigest element contains the signing algorithm identifier for the DNSKEY record represented in this KeyDigest.¶
The DigestType element in the KeyDigest element contains the digest algorithm identifier for the DNSKEY record represented in this KeyDigest.¶
The Digest element in the KeyDigest element contains the hexadecimal representation of the hash for the DNSKEY record represented in this KeyDigest.¶
The PublicKey element in the KeyDigest element contains the base64 representation of the public key represented in this KeyDigest. The PublicKey is optional and is new in this version of the specification.¶
The display format for the DS record that is the equivalent of a KeyDigest element can be constructed by marshaling the KeyTag, Algorithm, DigestType, and Digest elements. For example, assume that the TrustAnchor element contains:¶
<?xml version="1.0" encoding="UTF-8"?> <TrustAnchor id="AD42165F-3B1A-4778-8F42-D34A1D41FD93" source="http://data.iana.org/root-anchors/root-anchors.xml"> <Zone>.</Zone> <KeyDigest id="Kjqmt7v" validFrom="2010-07-15T00:00:00+00:00"> <KeyTag>19036</KeyTag> <Algorithm>8</Algorithm> <DigestType>2</DigestType> <Digest> 49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5 </Digest> <PublicKey> AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0= </PublicKey> </KeyDigest> </TrustAnchor>¶
The DS record would be:¶
. IN DS 19036 8 2 49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE1CDDE32F24E8FB5¶
The display format for the DNSKEY record that is the equivalent of a KeyDigest element can be constructed by marshaling the Algorithm and PublicKey elements with some constants. For example, assume that the TrustAnchor element is the same as in Section 2.1.3. The DNSKEY record would be:¶
. IN DNSKEY 257 3 8 AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0=¶
Figure 2 describes two fictitious trust anchors for the root zone.¶
<?xml version="1.0" encoding="UTF-8"?> <!-- Note that these trust anchors are fictitious. --> <TrustAnchor id="AD42165F-B099-4778-8F42-D34A1D41FD93" source="http://data.iana.org/root-anchors/root-anchors.xml"> <Zone>.</Zone> <KeyDigest id="42" validFrom="2010-07-01T00:00:00-00:00" validUntil="2010-08-01T00:00:00-00:00"> <!-- This key is no longer valid, since validUntil is in the past --> <KeyTag>34291</KeyTag> <Algorithm>5</Algorithm> <DigestType>1</DigestType> <Digest>c8cb3d7fe518835490af8029c23efbce6b6ef3e2</Digest> </KeyDigest> <KeyDigest id="53" validFrom="2010-08-01T00:00:00-00:00"> <KeyTag>12345</KeyTag> <Algorithm>5</Algorithm> <DigestType>1</DigestType> <Digest>a3cf809dbdbc835716ba22bdc370d2efa50f21c7</Digest> </KeyDigest> </TrustAnchor> Figure 2¶
Trust anchors are available for retrieval using HTTPS and HTTP.¶
In this section, all URLs are given using the "https:" scheme. If HTTPS cannot be used, replace the "https:" scheme with "http:".¶
The URL for retrieving the set of hashes described in Section 2.1 is <https://data.iana.org/root-anchors/root-anchors.xml>.¶
A validator operator can choose whether or not to accept the trust anchors described in this document using whatever policy they want. In order to help validator operators verify the content and origin of trust anchors they receive, IANA uses digital signatures that chain to an ICANN-controlled Certificate Authority (CA) over the trust anchor data.¶
It is important to note that the ICANN CA is not a DNSSEC trust anchor. Instead, it is an optional mechanism for verifying the content and origin of the XML and certificate trust anchors.¶
The content and origin of the XML file can be verified using a digital signature on the file. IANA provides a detached Cryptographic Message Syntax (CMS) [RFC5652] signature that chains to the ICANN CA with the XML file. The URL for a detached CMS signature for the XML file is <https://data.iana.org/root-anchors/root-anchors.p7s>.¶
Another method IANA uses to help validator operators verify the content and origin of trust anchors they receive is to use the Transport Layer Security (TLS) protocol for distributing the trust anchors. Currently, the CA used for data.iana.org is well known, that is, one that is a WebTrust-accredited CA. If a system retrieving the trust anchors trusts the CA that IANA uses for the "data.iana.org" web server, HTTPS SHOULD be used instead of HTTP in order to have assurance of data origin.¶
This document describes how DNSSEC trust anchors for the root zone of the DNS are published. Many DNSSEC clients will only configure IANA- issued trust anchors for the DNS root to perform validation. As a consequence, reliable publication of trust anchors is important.¶
This document aims to specify carefully the means by which such trust anchors are published, with the goal of making it easier for those trust anchors to be integrated into user environments.¶
The first KSK for use in the root zone of the DNS was generated at a key ceremony at an ICANN Key Management Facility (KMF) in Culpeper, Virginia, USA on 2010-06-16. This key entered production during a second key ceremony held at an ICANN KMF in El Segundo, California, USA on 2010-07-12. The resulting trust anchor was first published on 2010-07-15.¶
The second KSK for use in the root zone of the DNS was [ MORE GOES HERE ].¶
Many pioneers paved the way for the deployment of DNSSEC in the root zone of the DNS, and the authors hereby acknowledge their substantial collective contribution.¶
RFC 7958 incorporated suggestions made by Alfred Hoenes and Russ Housley, whose contributions are appreciated.¶