Internet-Draft DNS Resolver Information February 2024
Reddy & Boucadair Expires 18 August 2024 [Page]
Workgroup:
ADD
Internet-Draft:
draft-ietf-add-resolver-info-10
Published:
Intended Status:
Standards Track
Expires:
Authors:
T. Reddy
Nokia
M. Boucadair
Orange

DNS Resolver Information

Abstract

This document specifies a method for DNS resolvers to publish information about themselves. DNS clients can use the resolver information to identify the capabilities of DNS resolvers. How such an information is then used by DNS clients is out of the scope of this document.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the Adaptive DNS Discovery Working Group mailing list (add@ietf.org), which is archived at https://mailarchive.ietf.org/arch/browse/add/.

Source for this draft and an issue tracker can be found at https://github.com/boucadair/add-resolver-information.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 August 2024.

Table of Contents

1. Introduction

Historically, DNS clients communicated with upstream recursive resolvers without needing to know anything about the features supported by these resolvers. Also, more and more recursive resolvers expose different features that may impact delivered DNS services. It is thus valuable to support means to help DNS clients to identify the capabilities of resolvers. Typically, DNS clients can discover and authenticate encrypted DNS resolvers provided by a local network, for example, using the Discovery of Network-designated Resolvers (DNR) [RFC9463] and the Discovery of Designated Resolvers (DDR) [RFC9462]. However, these DNS clients need a mechanism to retrieve information from the discovered recursive resolvers about their capabilities.

This document fills that void by specifying a method for stub resolvers to retrieve such information. To that aim, a new resource record (RR) type is defined for DNS clients to query the recursive resolvers. The information that a resolver might want to expose is defined in Section 5.

Retrieved information can be used to feed the server selection procedure. However, that selection procedure is out of the scope of this document.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

This document makes use of the terms defined in [RFC8499]. The following additional terms are used:

Encrypted DNS:

Refers to a DNS scheme where DNS exchanges are transported over an encrypted channel between a DNS client and server (e.g., DNS over HTTPS (DoH) [RFC8484], DNS over TLS (DoT) [RFC7858], or DNS over QUIC (DoQ) [RFC9250]).

Encrypted DNS resolver:

Refers to a DNS resolver that supports any encrypted DNS scheme.

Reputation:

"The estimation in which an identifiable actor is held, especially by the community or the Internet public generally" (Section 1 of [RFC7070].

3. Retrieving Resolver Information

A DNS client that wants to retrieve the resolver information may use the RR type "RESINFO" defined in this document.

The content of the RDATA in a response to a RESINFO RR type query is defined in Section 5. If the resolver understands the RESINFO RR type, the RRSet in the Authority section MUST have exactly one record. The RESINFO in the Authority section reflects that the RESINFO is a property of the resolver and is not subject to recursive resolution.

A DNS client can retrieve the resolver information using the RESINFO RR type and the QNAME of the domain name that is used to authenticate the DNS resolver (referred to as the Authentication Domain Name (ADN) in DNR [RFC9463]).

If the Special-Use Domain Name "resolver.arpa", defined in [RFC9462], is used to discover an encrypted DNS resolver, the client can retrieve the resolver information using the RESINFO RR type and QNAME of "resolver.arpa". In this case, a client has to contend with the risk that a resolver does not support RESINFO. The resolver might pass the query upstream, and then the client can receive a positive RESINFO response either from a legitimate upstream DNS resolver or an attacker. If a client sees the RESINFO in the Answer section, it can detect that the response is not provided by the resolver and discards the response.

4. Format of the Resolver Information

The resolver information record uses the same format as DNS TXT records. As a reminder, the format rules for TXT records are defined in the base DNS specification (Section 3.3.14 of [RFC1035]) and further elaborated in the DNS-based Service Discovery (DNS-SD) specification (Section 6.1 of [RFC6763]). The recommendations to limit the TXT record size are discussed in Section 6.1 of [RFC6763].

Similar to DNS-SD, the RESINFO RR type uses "key/value" pairs to convey the resolver information. Each "key/value" pair is encoded using the format rules defined in Section 6.3 of [RFC6763]. Using standardized "key/value" syntax within the RESINFO RR type makes it easier for future keys to be defined. If a DNS client sees unknown keys in a RESINFO RR type, it MUST silently ignore them. The same rules for the keys as those defined in Section 6.4 of [RFC6763] MUST be followed for RESINFO.

Keys MUST either be defined in the IANA registry (Section 7.2) or begin with the substring "temp-" for names defined for local use only.

5. Resolver Information Keys/Values

The following resolver information keys are defined:

qnamemin:

If the DNS resolver supports QNAME minimisation [RFC9156] to improve DNS privacy, the key is present. Note that, as per the rules for the keys defined in Section 6.4 of [RFC6763], if there is no '=' in a key, then it is a boolean attribute, simply identified as being present, with no value.

This is an optional attribute.

exterr:

If the DNS resolver supports extended DNS errors (EDE) option [RFC8914] to return additional information about the cause of DNS errors, the value of this key lists the possible extended DNS error codes that can be returned by this DNS resolver. When multiple values are present, these values MUST be comma-separated.

This is an optional attribute.

infourl:

An URL that points to the generic unstructured resolver information (e.g., DoH APIs supported, possible HTTP status codes returned by the DoH server, or how to report a problem) for troubleshooting purposes. The server that exposes such information is called "resolver information server".

The resolver information server MUST support the content-type 'text/html'. The DNS client MUST reject the URL if the scheme is not "https". The URL SHOULD be treated only as diagnostic information for IT staff. It is not intended for end user consumption as the URL can possibly provide misleading information. A DNS client MAY choose to display the URL to the end user, if and only if the encrypted resolver has sufficient reputation, according to some local policy (e.g., user configuration, administrative configuration, or a built-in list of respectable resolvers).

This is an optional attribute. For example, a DoT server may not want to host an HTTPS server.

New keys can be defined as per the procedure defined in Section 7.2.

Figure 1 shows an example of a published resolver information record:

resolver.example.net. 7200 IN RESINFO qnamemin exterr=15,16,17
                      infourl=https://resolver.example.com/guide
Figure 1: An Example of Resolver Information Record

6. Security Considerations

DNS clients communicating with discovered DNS resolvers MUST use one of the following measures to prevent DNS response forgery attacks:

  1. Establish an authenticated secure connection to the DNS resolver.

  2. Implement local DNSSEC validation (Section 10 of [RFC8499]) to verify the authenticity of the resolver information.

It is important to note that, of these two measures, only the first one can apply to queries for 'resolver.arpa'.

An encrypted resolver may return incorrect information in RESINFO. If the client cannot validate the attributes received from the resolver, that will be used for resolver selection or displayed to the end-user, the client should process those attributes only if the encrypted resolver has sufficient reputation according to local policy (e.g., user configuration, administrative configuration, or a built-in list of reputable resolvers). This approach limits the ability of a malicious encrypted resolver to cause harm with false claims.

7. IANA Considerations

7.1. RESINFO RR Type

This document requests IANA to update this entry from the "Resource Record (RR) TYPEs" registry of the "Domain Name System (DNS) Parameters" registry group available at [RRTYPE]:

Type: RESINFO
Value: 261
Meaning: Resolver Information as Key/Value Pairs
Reference: RFCXXXX

7.2. DNS Resolver Information Key Registration

This document requests IANA to create a new registry entitled "DNS Resolver Information Keys" under the "Domain Name System (DNS) Parameters" registry group ([IANA-DNS]). This new registry contains definitions of the keys that can be used to provide the resolver information.

The registration procedure is Specification Required (Section 4.6 of [RFC8126]).

The structure of the registry is as follows:

Name:

The key name. The name MUST conform to the definition in Section 4 of this document. The IANA registry MUST NOT register names that begin with "temp-", so these names can be used freely by any implementer.

Description:

A description of the registered key.

Specification:

The reference specification for the registered element.

The initial content of this registry is provided in Table 1.

Table 1: Initial RESINFO Registry
Name Description Specification
qnamemin The presence of the key name indicates that QNAME minimization is enabled RFCXXXX
exterr Lists the set of supported extended DNS errors. It must be an INFO-CODE decimal value in the "Extended DNS Error Codes" registry. RFCXXXX
infourl Provides an URL that points to an unstructured resolver information that is used for troubleshooting RFCXXXX

8. References

8.1. Normative References

[RFC1035]
Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, DOI 10.17487/RFC1035, , <https://www.rfc-editor.org/rfc/rfc1035>.
[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/rfc/rfc2119>.
[RFC6763]
Cheshire, S. and M. Krochmal, "DNS-Based Service Discovery", RFC 6763, DOI 10.17487/RFC6763, , <https://www.rfc-editor.org/rfc/rfc6763>.
[RFC8126]
Cotton, M., Leiba, B., and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, , <https://www.rfc-editor.org/rfc/rfc8126>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/rfc/rfc8174>.
[RFC8914]
Kumari, W., Hunt, E., Arends, R., Hardaker, W., and D. Lawrence, "Extended DNS Errors", RFC 8914, DOI 10.17487/RFC8914, , <https://www.rfc-editor.org/rfc/rfc8914>.
[RFC9156]
Bortzmeyer, S., Dolmans, R., and P. Hoffman, "DNS Query Name Minimisation to Improve Privacy", RFC 9156, DOI 10.17487/RFC9156, , <https://www.rfc-editor.org/rfc/rfc9156>.
[RFC9462]
Pauly, T., Kinnear, E., Wood, C. A., McManus, P., and T. Jensen, "Discovery of Designated Resolvers", RFC 9462, DOI 10.17487/RFC9462, , <https://www.rfc-editor.org/rfc/rfc9462>.
[RFC9463]
Boucadair, M., Ed., Reddy.K, T., Ed., Wing, D., Cook, N., and T. Jensen, "DHCP and Router Advertisement Options for the Discovery of Network-designated Resolvers (DNR)", RFC 9463, DOI 10.17487/RFC9463, , <https://www.rfc-editor.org/rfc/rfc9463>.

8.2. Informative References

[I-D.pp-add-resinfo]
Sood, P. and P. E. Hoffman, "DNS Resolver Information Self-publication", Work in Progress, Internet-Draft, draft-pp-add-resinfo-02, , <https://datatracker.ietf.org/doc/html/draft-pp-add-resinfo-02>.
[IANA-DNS]
IANA, "Domain Name System (DNS) Parameters", <http://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-4>.
[RFC7070]
Borenstein, N. and M. Kucherawy, "An Architecture for Reputation Reporting", RFC 7070, DOI 10.17487/RFC7070, , <https://www.rfc-editor.org/rfc/rfc7070>.
[RFC7858]
Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., and P. Hoffman, "Specification for DNS over Transport Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, , <https://www.rfc-editor.org/rfc/rfc7858>.
[RFC8484]
Hoffman, P. and P. McManus, "DNS Queries over HTTPS (DoH)", RFC 8484, DOI 10.17487/RFC8484, , <https://www.rfc-editor.org/rfc/rfc8484>.
[RFC8499]
Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499, , <https://www.rfc-editor.org/rfc/rfc8499>.
[RFC9250]
Huitema, C., Dickinson, S., and A. Mankin, "DNS over Dedicated QUIC Connections", RFC 9250, DOI 10.17487/RFC9250, , <https://www.rfc-editor.org/rfc/rfc9250>.
[RRTYPE]
IANA, "Resource Record (RR) TYPEs", <https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml>.

Acknowledgments

This specification leverages the work that has been documented in [I-D.pp-add-resinfo].

Thanks to Tommy Jensen, Vittorio Bertola, Vinny Parla, Chris Box, Ben Schwartz, Tony Finch, Daniel Kahn Gillmor, Eric Rescorla, Shashank Jain, Florian Obser, Richard Baldry, and Martin Thomson for the discussion and comments.

Thanks to Mark Andrews, Joe Abley, Paul Wouters, Tim Wicinski, and Steffen Nurpmeso for the discussion on the RR formatting rules.

Special thanks to Tommy Jensen for the careful and thoughtful Shepherd review.

Thanks to Johan Stenstam for the dns-dir review and Ray Bellis for the RRTYPE allocation review.

Thanks to Eric Vyncke for the AD review.

Authors' Addresses

Tirumaleswar Reddy
Nokia
India
Mohamed Boucadair
Orange
35000 Rennes
France